# Transient Effects of Applying and Removing Strain on the Mechanical Behavior of Rubber

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

^{−1}) and for the “visco” step it was 900 s, as in the experiments.

## 3. Results

#### 3.1. Experimental Test Results

#### 3.2. FEM Compared with Experimental Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity, 4th ed.; Cambridge University Press: New York, NY, USA, 1927. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics, 2nd ed.; Pergamon: Oxford, UK, 1987; Volume 6, pp. 61–252. [Google Scholar]
- Lakes, R. Viscoelastic Materials, 1st ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Huang, B.; Li, S.S.; Pang, C.; Eggers, J. Investigation into waste tire rubber-filled concrete. J. Mater. Civ. Eng.
**2004**, 16, 187–194. [Google Scholar] [CrossRef] - Budday, S.; Sommer, G.; Holzapfel, G.A.; Steinmann, P.; Kuhl, E. Viscoelastic parameter identification of human brain tissue. J. Mech. Behav. Biomed. Mater.
**2017**, 74, 463–476. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Sun, T.L.; Kurokawa, T.; Kuroda, S.; Ihsan, A.B.; Akasaki, T.; Sato, K.; Haque, M.A.; Nakajima, T.; Gong, J.P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater.
**2013**, 12, 932–937. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gomez, M.; Moulton, D.E.; Vella, D. Dynamics of viscoelastic snap-through. J. Mech. Phys. Solids
**2019**, 124, 781–813. [Google Scholar] [CrossRef] - Gkouti, E.; Yenigun, B.; Jankowski, K.; Czekanski, A. Non-linear Poisson function for natural rubbers. In Proceedings of the Canadian Society for Mechanical Engineering International Congress Conference (CSME2020), Charlettetown, PE, Canada, 21–24 June 2020. [Google Scholar]
- Gkouti, E.; Yenigun, B.; Jankowski, K.; Czekanski, A. Non-linear stretch modulus of materials under simple tension. In Proceedings of the Canadian Society for Mechanical Engineering International Congress Conference (CSME2020), Charlettetown, PE, Canada, 21–24 June 2020. [Google Scholar]
- Mihai, L.A.; Goriely, A. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameter in isotropic finite elasticity. Proc. R. Soc. Lond. A
**2017**, 473, 20170607. [Google Scholar] [CrossRef] [Green Version] - Sun, Y.; Gu, Z.; Wang, J.; Yuan, X. Research of method for solving relaxation modulus based on three-point bending creep test. Materials
**2019**, 12, 2021. [Google Scholar] [CrossRef] [Green Version] - Peng, L.; Li, Z.; Luo, W.; Li, Y. Analysis of dynamic viscoelastic properties of chloroprene rubber considering pre-strain effect. Mater. Res. Express
**2019**, 6, 105324. [Google Scholar] [CrossRef] - Abdelaziz, M.N.; Ayoub, G.; Colin, X.; Benhassine, M.; Mouwakeh, M. New developments in fracture of rubbers: Predictive tools and influence of thermal aging. Int. J. Solids Struct.
**2019**, 165, 127–136. [Google Scholar] [CrossRef] - Saintier, N.; Cailletaud, G.; Piques, R. Multiaxial fatigue life prediction for a natural rubber. Int. J. Fatigue
**2006**, 28, 530–539. [Google Scholar] [CrossRef] [Green Version] - Wool, R. Self-healing materials: A revirew. R. Soc. Chem.
**2008**, 4, 400–418. [Google Scholar] - Hager, M.; Greil, P.; Levens, C.; van der Zwaag, S.; Shubert, U. Self-healing materials. Adv. Mater.
**2010**, 22, 5424–5430. [Google Scholar] [PubMed] - Drozdov, A. Viscoelastic Structures; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Gurtin, M.E.; Sternberg, E. On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal.
**1962**, 11, 291–356. [Google Scholar] [CrossRef] - Gent, A.N. Relaxation process in vulcanized rubber. I. Relation among Stress Relaxation Creep, Recovery, and Hysteresis. J. Appl. Polym. Sci.
**1962**, 22, 433–441. [Google Scholar] - Duenwald, S.; Vander, S.R., Jr.; Lakes, R. Viscoelastic relaxation and recovery of tendon. Ann. Biomed. Eng.
**2009**, 37, 1131–1140. [Google Scholar] [CrossRef] - Xue, C.; Gao, H.; Hu, Y.; Hu, G. Experimental test and curve fitting of creep recovery characteristics of modified graphene oxide natural rubber and its relationship with temperature. Polym. Test.
**2020**, 87, 106509. [Google Scholar] [CrossRef] - Amin, A.; Lion, A.; Sekita, S.; Okui, Y. Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear. Experimental identification and numerical verification. Int. J. Plast.
**2006**, 22, 1610–1657. [Google Scholar] [CrossRef] - Khodadadian, A.; Noii, N.; Parvizi, M.; Abbaszadeh, M.; Wick, T.; Heitzinger, C. A Bayesian estimation method for variational phase-field fracture problems. Comput. Mech.
**2020**, 66, 827–849. [Google Scholar] - Noii, N.; Aldakheel, F.; Wick, T.; Wriggers, P. An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture. Comput. Methods Appl. Mech. Eng.
**2020**, 361, 112744. [Google Scholar] [CrossRef] [Green Version] - Khodadadian, A.; Parvizi, M.; Abbaszadeh, M.; Dehghan, M.; Heitzinger, C. A multilevel Monte Carlo finite element methods for the stochastic Cahn-Hilliard-Cook equation. Comput. Mech.
**2019**, 64, 937–949. [Google Scholar] [CrossRef] [Green Version] - Abaqus. Abaqus 6.12 Documentation. Available online: www.simulia.com (accessed on 1 July 2020).
- Brown, R. Physical Testing of Rubbers, 3rd ed.; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Pan, B. Recent progress in Digital Image Correlation. Exp. Mech.
**2011**, 51, 1223–1235. [Google Scholar] - Speranzini, E.; Marsili, R.; Moretti, M.; Rossi, G. Image analysis technique for material behaviour evaluation in civil structures. Materials
**2017**, 10, 770. [Google Scholar] - Westbrook, K.K.; Kao, P.H.; Castro, F.; Ding, Y.; Qi, H.J. A 3D finite deformation constitutive model for amorphous shape memory polymers: A multi-branch modeling approach for nonequilibrium relaxation processes. Mech. Mater.
**2011**, 43, 853–869. [Google Scholar] [CrossRef] - Ahmadi, H.R.; Kingston, J.G.R.; Muhr, A.H. Dynamic properties of filled rubber-Part I: Simple model, experimental data and simulated results. Rubber Chem. Technol.
**2008**, 81, 1–18. [Google Scholar] [CrossRef] - Freund, M.; Lorenz, H.; Juhre, D.; Ihlemann, J.; Kluppel, M. Finite element implementation of a micro-structure-based model for filled elastomers. Int. J. Plast.
**2011**, 27, 902–919. [Google Scholar] - Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics; Springer: Berlin, Germany, 1965; pp. 294–426. [Google Scholar]
- Ogden, R.W.; Roxburgh, D.G. A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A
**1999**, 455, 2861–2877. [Google Scholar] [CrossRef] - Mullins, L. Effect of stretching on the properties of rubber. Rubber Chem. Technol.
**1948**, 21, 281–300. [Google Scholar] [CrossRef] - Mullins, L. Softening of rubber by deformation. Rubber Chem. Technol.
**1969**, 42, 339–362. [Google Scholar] [CrossRef] - Gkouti, E.; Yenigun, B.; Jankowski, K.; Czekanski, A. Experimental study of Mullins effect in natural rubber for different stretch conditions. In Proceedings of the ASME 2020 International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC2020), St. Louis, MO, USA, 16–19 August 2020. [Google Scholar]
- Treloar, C. Physics of Rubber Elasticity; Oxford University Press: London, UK, 1949. [Google Scholar]

**Figure 1.**Relaxation and recovery. (

**a**) The history of applying and removing strain over time (cause). (

**b**) The stress response following the application and removal of strain as a step function of time (effect).

**Figure 2.**Experimental data of (

**a**) uniaxial, planar, equibiaxial tests until fracture, (

**b**) stress relaxation beginning from 100% strain.

**Figure 3.**Five repeating cycles of loading–unloading with relaxation and its recovery for different strain levels. Graphs in the left column show the history of applying (

**a**) 25%, 50%, (

**c**) 75%, and 100% and partially removing the strain until it reaches 10% of the applied strain over time (cause). Graphs on the right column show the stress response following the application and removal of (

**b**) 25%, 50%, (

**d**) 75%, and 100% as a step function of time (effect).

**Figure 4.**FEM compared with experimental results for the first cycle. Graphs in the left column show the history of applying (

**a**) 25%, (

**c**) 50%, (

**e**) 75%, and (

**g**) 100% strain and partially removing it until it reaches 10% of the applied strain (cause). Graphs in the right column show the stress response following the application and removal of (

**b**) 25%, (

**d**) 50%, (

**f**) 75%, and (

**h**) 100% strain as a step function (effect).

**Figure 5.**FEM compared with experimental results for the fifth cycle. Graphs in the left column show the history of applying (

**a**) 25%, (

**c**) 50%, (

**e**) 75%, and (

**g**) 100% strain and partially removing it until it reaches 10% of the applied strain (cause). Graphs in the right column show the stress response following the application and removal of (

**b**) 25%, (

**d**) 50%, (

**f**) 75%, and (

**h**) 100% strain as a step function (effect).

**Figure 6.**The normalized stress response following the application and removal of strain as a step function of time during the first cycle (left column) for the strain levels of (

**a**) 25%, (

**c**) 50%, (

**e**) 75%, (

**g**) 100% and fifth cycle (right column) for the strain levels of (

**b**) 25%, (

**d**) 50%, (

**f**) 75%, (

**h**) 100%.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gkouti, E.; Yenigun, B.; Czekanski, A.
Transient Effects of Applying and Removing Strain on the Mechanical Behavior of Rubber. *Materials* **2020**, *13*, 4333.
https://doi.org/10.3390/ma13194333

**AMA Style**

Gkouti E, Yenigun B, Czekanski A.
Transient Effects of Applying and Removing Strain on the Mechanical Behavior of Rubber. *Materials*. 2020; 13(19):4333.
https://doi.org/10.3390/ma13194333

**Chicago/Turabian Style**

Gkouti, Elli, Burak Yenigun, and Aleksander Czekanski.
2020. "Transient Effects of Applying and Removing Strain on the Mechanical Behavior of Rubber" *Materials* 13, no. 19: 4333.
https://doi.org/10.3390/ma13194333