Real-Time Optimization of Anti-Reflective Coatings for CIGS Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spectroscopic Ellipsometry Measurements and Data Analysis
2.2. Transfer Matrix Theory Modeling
3. Results and Discussion
3.1. Real-Time Optimization of Thickness of AR Layer via In-Situ RTSE
3.2. Real-Time Optimization of Thickness of AR Layer via Transfer Matrix Theory Modeling and In-Situ RTSE for Variation in Multilayer Structure
3.2.1. Optimizing the AR Layer as a Function of the CIGS Layer Thickness
3.2.2. Optimizing the AR Layer as a Function of the CdS Layer Thickness
3.2.3. Optimizing the AR Layer as a Function of the AZO Layer Thickness
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL Rapid Res. Lett. 2016, 10, 583–586. [Google Scholar] [CrossRef] [Green Version]
- Raut, H.K.; Ganesh, V.A.; Nairb, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804. [Google Scholar] [CrossRef]
- Kaminski, P.; Lisco, F.; Walls, J. Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells. IEEE J. Photovolt. 2014, 4, 452–456. [Google Scholar] [CrossRef]
- Nubile, P. Analytical design of antireflection coatings for silicon photovoltaic devices. Thin Solid Films 1999, 342, 257–261. [Google Scholar] [CrossRef]
- Hara, T.; Maekawa, T.; Minoura, S.; Sago, Y.; Niki, S.; Fujiwara, H. Quantitative assessment of optical gain and loss in submicron-textured CuInGaSe2 solar cells fabricated by three-stage coevaporation. Phys. Rev. Appl. 2014, 2, 034012. [Google Scholar] [CrossRef]
- Ibdah, A.; Koirala, P.; Aryal, P.; Pradhan, P.; Marsillac, S.; Rockett, A.; Podraza, N.; Collins, R. Spectroscopic ellipsometry for analysis of polycrystalline thin-film photovoltaic devices and prediction of external quantum efficiency. Appl. Surf. Sci. 2017, 421, 601–607. [Google Scholar] [CrossRef]
- Ibdah, A.; Koirala, P.; Aryal, P.; Pradhan, P.; Heben, M.; Podraza, N.; Marsillac, S.; Collins, R. Optical simulation of external quantum efficiency spectra of CuIn1−xGaxSe2 solar cells from spectroscopic ellipsometry inputs. J. Energy Chem. 2018, 27, 1151–1169. [Google Scholar] [CrossRef] [Green Version]
- Woollam, J.A. Guide to Using WVASE 32: Spectroscopic Ellipsometry Data Acquisition and Analysis Software; J. A. Woollam Company Inc.: Lincoln, NE, USA, 2008. [Google Scholar]
- Tompkins, H.; Irene, E.A. Handbook of Ellipsometry; William Andrew: Norwich, NY, USA, 2005. [Google Scholar]
- Aryal, P.; Ibdah, A.; Pradhan, P.; Attygalle, D.; Koirala, P.; Podraza, N.; Marsillac, S.; Collins, R.; Li, J. Parameterized complex dielectric functions of CuIn1−xGaxSe2: Applications in optical characterization of compositional non-uniformities and depth profiles in materials and solar cells. Prog. Photovolt. Res. Appl. 2016, 24, 1200–1213. [Google Scholar] [CrossRef]
- Aryal, K.; Khatri, H.; Collins, R.; Marsillac, S. In situ and ex situ studies of molybdenum thin films deposited by rf and dc magnetron sputtering as a back contact for CIGS solar cells. Int. J. Photoenergy 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Khatri, H.; Collins, R.; Marsillac, S. In-Situ and Ex-Situ Studies of Molybdenum Thin Films Deposited by rf and dc Magnetron Sputtering. In Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010; IEEE: New York, NY, USA, 2010. [Google Scholar]
- Aryal, K.; Rajan, G.; Erkaya, Y.; Hegde, N.; Boland, P.; Ranjan, V.; Collins, R.; Marsillac, S. Characterization of TCO Deposition for CIGS Solar Cells. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; IEEE: New York, NY, USA, 2012. [Google Scholar]
- Santbergen, R.; Smets, A.; Zeman, M. Optical model for multilayer structures with coherent, partly coherent and incoherent layers. Opt. Express 2013, 21, A262–A267. [Google Scholar] [CrossRef] [Green Version]
- Chilwell, J.; Hodgkinson, I. Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. A 1984, 1, 742–753. [Google Scholar] [CrossRef]
- Prentice, J. Optical generation rate of electron-hole pairs in multilayer thin-film photovoltaic cells. J. Phys. D Appl. Phys. 1999, 32, 2146–2150. [Google Scholar] [CrossRef]
- Prentice, J. Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures. J. Phys. D Appl. Phys. 2000, 33, 3139–3145. [Google Scholar] [CrossRef]
- Pettersson, L.; Roman, L.; Inganas, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487–496. [Google Scholar] [CrossRef]
- Poruba, A.; Fejfar, A.; Remes, Z.; Springer, J.; Vanecek, M.; Kocka, J.; Meier, J.; Torres, P.; Shah, A. Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. J. Appl. Phys. 2000, 88, 148–160. [Google Scholar] [CrossRef]
- Springer, J.; Poruba, A.; Vanecek, M. Improved three-dimensional optical model for thin-film silicon solar cells. J. Appl. Phys. 2004, 96, 5329–5337. [Google Scholar] [CrossRef]
- Contreras, M.; Egaas, B.; Ramanathan, K.; Hiltner, J.; Swartzlander, A.; Hasoon, F.; Noufi, R. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Prog. Photovolt. Res. Appl. 1999, 7, 311–316. [Google Scholar] [CrossRef]
- Chirila, A.; Buecheler, S.; Pianezzi, F.; Bloesch, P.; Gretener, C.; Uhl, A.; Fella, C.; Kranz, L.; Perrenoud, J.; Seyrling, S.; et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 2011, 10, 857–861. [Google Scholar] [CrossRef]
- Jackson, P.; Hariskos, D.; Wuerz, R.; Kiowski, O.; Bauer, A.; Friedlmeier, T.; Powalla, M. Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi RRL Rapid Res. Lett. 2015, 9, 28–31. [Google Scholar] [CrossRef]
- Rajan, G.; Ibdah, A.; Aryal, K.; Ashrafee, T.; Ranjan, V.; Pogue, A.; Rockett, A.; Collins, R.; Marsillac, S. Optical Enhancement of Ultra-Thin CIGS Solar Cells Using Multilayered Antireflection Coatings. In Proceedings of the 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Koirala, P.; Li, J.; Yoon, H.; Aryal, P.; Marsillac, S.; Rockett, A.; Podraza, N.; Collins, R. Through-the-glass spectroscopic ellipsometry for analysis of CdTe thin-film solar cells in the superstrate configuration. Prog. Photovolt. Res. Appl. 2016, 24, 1055–1067. [Google Scholar] [CrossRef]
- Shafarman, W.; Birkmire, R.; Marsillac, S.; Marudachalam, M.; Orbey, N.; Russell, T. Effect of Reduced Deposition Temperature, Time, And Thickness on Cu (InGa)Se2 Films and Devices. In Proceedings of the 26th Photovoltaic Specialist Conference, Anaheim, CA, USA, 29 September–3 October 1997; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Amory, C.; Bernede, J.; Marsillac, S. Study of a growth instability of γ-In2Se3. J. Appl. Phys. 2003, 94, 6945–6948. [Google Scholar]
- Rajan, G.; Aryal, K.; Ashrafee, T.; Karki, S.; Ibdah, A.; Ranjan, V.; Collins, R.; Marsillac, S. Optimization of Anti-Reflective Coatings for CIGS Solar Cells via Real Time Spectroscopic Ellipsometry. In Proceedings of the 42nd Photovoltaic Specialist Conference, New Orleans, LA, USA, 14–16 June 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Aryal, K.; Erkaya, Y.; Rajan, G.; Ashrafee, T.; Rockett, A.; Collins, R.; Marsillac, S. Comparative Study of ZnS Thin Films Deposited by CBD and ALD as a Buffer Layer for CIGS Solar Cell. In Proceedings of the 2013 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; IEEE: New York, NY, USA, 2013. [Google Scholar]
- Orgassa, K.; Rau, U.; Nguyen, Q.; Schock, H.; Werner, J. Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells. Prog. Photovolt. Res. Appl. 2002, 10, 457–463. [Google Scholar]
- Islam, M.; Ishizuka, S.; Yamada, A.; Matsubara, K.; Niki, S.; Sakurai, T.; Akimoto, K. Thickness study of Al:ZnO film for application as a window layer in Cu(In1−xGax)Se2 thin film solar cell. Appl. Surf. Sci. 2011, 257, 4026–4030. [Google Scholar]
AR Coating | η (%) | Jsc (mA/cm2) | Voc (V) | FF (%) |
---|---|---|---|---|
Without AR | 16.7 | 35.6 | 0.64 | 73.4 |
With MgF2 | 17.6 | 37.5 | 0.64 | 73.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajan, G.; Karki, S.; Collins, R.W.; Podraza, N.J.; Marsillac, S. Real-Time Optimization of Anti-Reflective Coatings for CIGS Solar Cells. Materials 2020, 13, 4259. https://doi.org/10.3390/ma13194259
Rajan G, Karki S, Collins RW, Podraza NJ, Marsillac S. Real-Time Optimization of Anti-Reflective Coatings for CIGS Solar Cells. Materials. 2020; 13(19):4259. https://doi.org/10.3390/ma13194259
Chicago/Turabian StyleRajan, Grace, Shankar Karki, Robert W. Collins, Nikolas J. Podraza, and Sylvain Marsillac. 2020. "Real-Time Optimization of Anti-Reflective Coatings for CIGS Solar Cells" Materials 13, no. 19: 4259. https://doi.org/10.3390/ma13194259
APA StyleRajan, G., Karki, S., Collins, R. W., Podraza, N. J., & Marsillac, S. (2020). Real-Time Optimization of Anti-Reflective Coatings for CIGS Solar Cells. Materials, 13(19), 4259. https://doi.org/10.3390/ma13194259