Pullout Behavior of Recycled Waste Fishing Net Fibers Embedded in Cement Mortar
Abstract
:1. Introduction
2. Background
3. Materials Preparation
4. Test Setup and Procedure
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naaman, A.E.; Shar, S.R. Pull-out mechanism in steel fibre-reinforced concrete. J. Struct. Div. 1976, 102, 1537–1548. [Google Scholar]
- Morton, J.; Groves, G.W. The cracking of composites consisting of discontinuous ductile fibres in a brittle matrix—Effect of fibre orientation. J. Mater. Sci. 1974, 9, 1436–1445. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of macro plastic fibres in concrete: A review. Constr. Build. Mater. 2015, 93, 180–188. [Google Scholar] [CrossRef]
- Banthia, N.; Majdzadeh, F.; Wu, J.; Bindiganavile, V. Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cem. Concr. Compos. 2014, 48, 91–97. [Google Scholar] [CrossRef]
- Kim, M.O.; Bordelon, A.C.; Lee, N.K. Early-age crack widths of thin fiber reinforced concrete overlays subjected to temperature gradients. Constr. Build. Mater. 2017, 148, 492–503. [Google Scholar] [CrossRef]
- Kim, M.O.; Bordelon, A.C. Age-dependent properties of fiber-reinforced concrete for thin concrete overlays. Constr. Build. Mater. 2017, 137, 288–299. [Google Scholar] [CrossRef]
- Kim, M.O.; Bordelon, A.; Lee, M.K.; Oh, B.H. Cracking and failure of patch repairs in RC members subjected to bar corrosion. Constr. Build. Mater. 2016, 107, 255–263. [Google Scholar] [CrossRef]
- Kim, M.O.; Bordelon, A. Fiber Effect on Interfacial Bond between Concrete and Fiber-Reinforced Mortar. Transp. Res. Rec. 2016, 2591, 11–18. [Google Scholar] [CrossRef]
- Kim, M.O.; Bordelon, A. Determination of Total Fracture Energy for Fiber-Reinforced Concrete. ACI Spec. Publ. 2015, 300, 1–16. [Google Scholar]
- Singh, S.; Shukla, A.; Brown, R. Pullout behavior of polypropylene fibers from cementitious matrix. Cem. Concr. Res. 2004, 34, 1919–1925. [Google Scholar] [CrossRef]
- Tran, N.T.; Tran, T.K.; Jeon, J.K.; Park, J.K.; Kim, D.J. Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates. Cem. Concr. Res. 2016, 79, 169–184. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Banthia, N.; Fujikake, K.; Kim, Y.H.; Gupta, R. Fiber-Reinforced Cement Composites: Mechanical Properties and Structural Implications. Adv. Mater. Sci. Eng. 2018, 2018, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chom, B.S.; Zureick, A.H. Fiber reinforce concrete using recycled carpet industrial waste and its potential use in highway construction. In Proceedings of the Symposium on Recovery & Effective Reuse of Discarded Materials & By-Products for Construction of Highway Facilities, Denver, CO, USA, 19 October 1993; pp. 4111–4117. [Google Scholar]
- Ochi, T.; Okubo, S.; Fukui, K. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cem. Concr. Compos. 2007, 29, 448–455. [Google Scholar] [CrossRef]
- Kim, S.B.; Yi, N.H.; Kim, H.Y.; Kim, J.-H.J.; Song, Y.-C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem. Concr. Compos. 2010, 32, 232–240. [Google Scholar] [CrossRef]
- García, D.; Vegas, I.; Cacho, I. Mechanical recycling of GFRP waste as short-fiber reinforcements in microconcrete. Constr. Build. Mater. 2014, 64, 293–300. [Google Scholar] [CrossRef]
- Abdul Awal, A.S.M. Strength, Modulus of elasticity and shrinkage behaviour of concrete containing waste carpet fiber. Int. J. Geomate 2015, 9, 1441–1446. [Google Scholar] [CrossRef]
- Gu, L.; Ozbakkaloglu, T. Use of recycled plastics in concrete: A critical review. Waste Manag. 2016, 51, 19–42. [Google Scholar] [CrossRef]
- Bertelsen, I.M.G.; Ottosen, L.M. Engineering properties of fibers from waste fishing nets. In Proceedings of the International Conference on Materials, Systems and Structures in Civil Engineering: Conference Workshop on Cold Region Engineering, Technical University of Denmark, Lyngby, Denmark, 22 August 2016; pp. 7–16. [Google Scholar]
- Spadea, S.; Farina, I.; Carrafiello, A.; Fraternali, F. Recycled nylon fibers as cement mortar reinforcement. Constr. Build. Mater. 2015, 80, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Orasutthikul, S.; Unno, D.; Yokota, H. Effectiveness of recycled nylon fiber from waste fishing net with respect to fiber reinforced mortar. Constr. Build. Mater. 2017, 146, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Kim, D.J.; Kim, M.O. Mechanical behavior of waste fishing net fiber-reinforced cementitious composites subjected to direct tension. J. Build. Eng. 2020, 33, 101622. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr. Build. Mater. 2010, 24, 927–933. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shanks, R.A.; Collister, T.; Combe, M.; Jacob, M.; Tian, M.; Sivakugan, N. Fiber preparation and mechanical properties of recycled polypropylene for reinforcing concrete. J. Appl. Polym. Sci. 2015, 132, 41866. [Google Scholar] [CrossRef]
- Betterman, L.R.; Ouyang, C.; Shah, S.P. Fiber-matrix interaction in microfiber-reinforced mortar. Adv. Cem. Based Mater. 1995, 2, 53–61. [Google Scholar] [CrossRef]
- Park, J.K.; Ngo, T.T.; Kim, D.J. Interfacial bond characteristics of steel fibers embedded in cementitious composites at high rates. Cem. Concr. Res. 2019, 123, 105802. [Google Scholar] [CrossRef]
- Li, V.C.; Wang, S.; Backer, S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites 1990, 21, 132–140. [Google Scholar] [CrossRef]
- Ferrara, G.; Pepe, M.; Martinelli, E.; Tolêdo Filho, R.D. Influence of an impregnation treatment on the morphology and mechanical behaviour of flax yarns embedded in hydraulic lime mortar. Fibers 2019, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Aljewifi, H.; Fiorio, B.; Gallias, J.L. Pull-out behaviour of a glass multi-filaments yarn embedded in a cementitious matrix. In Computational Modeling of Concrete Structures. EURO-C 2010; Bićanić, N., de Borst, R., Mang, H., Meschke, G., Eds.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Di Maida, P.; Radi, E.; Sciancalepore, C.; Bondioli, F. Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica. Constr. Build. Mater. 2015, 82, 39–44. [Google Scholar] [CrossRef] [Green Version]
- American Society for Testing and Materials. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Or [50-mm] Cube Specimens, ASTM C109/C109M-16a; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Park, J.K.; Kim, S.-W.; Kim, D.J. Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact. Compos. Struct. 2017, 162, 313–324. [Google Scholar] [CrossRef]
- Babafemi, A.J.; du Plessis, A.; Boshoff, W.P. Pull-out creep mechanism of synthetic macro fibres under a sustained load. Constr. Build. Mater. 2018, 174, 466–473. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Svensson, S.J.; Bertelsen, I.M.G. Discarded nylon fishing nets as fibre reinforcement in cement mortar. WIT Trans. Ecol. Environ. 2019, 231, 245–256. [Google Scholar]
- Kim, D.J.; El-Tawil, S.; Naaman, A.E. Correlation between Single Fiber Pullout and Tensile Response of Frc Composites with High Strength Steel Fibers. In Proceedings of the Fifth International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC5), Mainz, Germany, 10–13 July 2007; pp. 67–76. [Google Scholar]
Cement (Type I) | Water | Silica Sand | Superplasticizer | Compressive Strength (MPa) | Tensile Strength (MPa) |
---|---|---|---|---|---|
1.0 | 0.45 | 1.5 | 0.0009 | 71.9 | 1.53 |
Notation | Fiber Type | Diameter of Filament (mm) | Number of Filaments | Embedded Length (mm) | Tensile Strength (MPa) |
---|---|---|---|---|---|
WFN1 | Monofilament | 0.45 | 1 | 10 | 305 |
WFN2 | Multifilament (Bundled) | 0.2 | 18 | 10 | 188 |
WFN3 | Multifilament (Bundled) | 0.2 | 30 | 10 | 173 |
CP1 | Smooth | 1.4 × 0.1 a | 1 | 10 | 620 |
CP2 | Embossed | 1.1 × 0.6 a | 1 | 10 | 450 |
Notation | Specimens | Peak Pullout Load Ppeak (N) | Fiber Stress σF (MPa) | Slip at Peak Load ΔPeak (mm) | Pullout Energy EP (N·mm) |
---|---|---|---|---|---|
WFN1 | SP1 | N.A. | N.A. | N.A. | N.A. |
SP2 | N.A. | N.A. | N.A. | N.A. | |
SP3 | N.A. | N.A. | N.A. | N.A. | |
Average | N.A. | N.A. | N.A. | N.A. | |
WFN2 | SP1 | 102.10 | 180.55 | 3.63 | 623.64 |
SP2 | 111.45 | 197.09 | 3.55 | 664.57 | |
SP3 | 96.30 | 170.30 | 2.69 | 646.89 | |
SP4 | 103.65 | 183.29 | 2.77 | 577.68 | |
Average | 103.38 | 182.81 | 3.16 | 628.19 | |
WFN3 | SP1 | 147.55 | 156.56 | 1.96 | 693.67 |
SP2 | 162.45 | 172.36 | 1.38 | 809.92 | |
SP3 | 136.95 | 145.31 | 1.74 | 658.35 | |
SP4 | 130.20 | 138.15 | 1.36 | 634.44 | |
Average | 144.29 | 153.09 | 1.61 | 699.09 | |
CP1 | SP1 | 14.50 | 103.57 | 1.34 | 66.01 |
SP2 | 15.70 | 112.14 | 1.19 | 83.87 | |
SP3 | 13.50 | 96.43 | 1.17 | 65.50 | |
SP4 | 15.00 | 107.14 | 0.87 | 86.15 | |
Average | 14.68 | 104.82 | 1.14 | 75.38 | |
CP2 | SP1 | 168.65 | 255.53 | 2.14 | 888.23 |
SP2 | 163.20 | 247.27 | 2.07 | 818.15 | |
SP3 | 169.25 | 256.44 | 2.00 | 994.46 | |
SP4 | 152.45 | 230.98 | 2.06 | 697.86 | |
Average | 163.39 | 247.56 | 2.07 | 849.68 |
Notation | df (mm) | N (ea) | Total Diameter (mm) | rA - | R (mm) | pexposed (mm) | p (mm) |
---|---|---|---|---|---|---|---|
WFN2 | 0.2 | 18 | 1.0 | 0.907 | 0.445 | 4.397 | 3.142 |
WFN3 | 0.2 | 30 | 1.5 | 0.907 | 0.575 | 5.676 | 4.712 |
Notation | Specimens | Peak Bond Strength (MPa) | Equivalent Bond Strength (MPa) |
---|---|---|---|
WFN2 | SP1 | 2.32 | 2.84 |
SP2 | 2.53 | 3.02 | |
SP3 | 2.19 | 2.94 | |
SP4 | 2.36 | 2.63 | |
Average | 2.36 | 2.86 | |
WFN3 | SP1 | 2.60 | 2.44 |
SP2 | 2.86 | 2.85 | |
SP3 | 2.41 | 2.32 | |
SP4 | 2.29 | 2.24 | |
Average | 2.54 | 2.46 | |
CP1 | SP1 | 0.48 | 0.44 |
SP2 | 0.52 | 0.56 | |
SP3 | 0.45 | 0.44 | |
SP4 | 0.50 | 0.57 | |
Average | 0.49 | 0.50 | |
CP2 | SP1 | 4.96 | 5.22 |
SP2 | 4.80 | 4.81 | |
SP3 | 4.98 | 5.85 | |
SP4 | 4.48 | 4.11 | |
Average | 4.81 | 5.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.K.; Kim, M.O.; Kim, D.J. Pullout Behavior of Recycled Waste Fishing Net Fibers Embedded in Cement Mortar. Materials 2020, 13, 4195. https://doi.org/10.3390/ma13184195
Park JK, Kim MO, Kim DJ. Pullout Behavior of Recycled Waste Fishing Net Fibers Embedded in Cement Mortar. Materials. 2020; 13(18):4195. https://doi.org/10.3390/ma13184195
Chicago/Turabian StylePark, Jun Kil, Min Ook Kim, and Dong Joo Kim. 2020. "Pullout Behavior of Recycled Waste Fishing Net Fibers Embedded in Cement Mortar" Materials 13, no. 18: 4195. https://doi.org/10.3390/ma13184195
APA StylePark, J. K., Kim, M. O., & Kim, D. J. (2020). Pullout Behavior of Recycled Waste Fishing Net Fibers Embedded in Cement Mortar. Materials, 13(18), 4195. https://doi.org/10.3390/ma13184195