Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, J.C.; Starke, A.E. Progress in structural materials for aerospace. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Liu, S.; Chang, K.; Mráz, S.; Chen, X.; Hans, M.; Music, D.; Primetzhofer, D.; Schneider, J.M. Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films. Acta Mater. 2019, 165, 615–625. [Google Scholar] [CrossRef]
- Gao, T.; Li, Z.; Hu, K.; Han, M.; Liu, X. Synthesizing (ZrAl3 + AlN)/Mg–Al composites by a ‘matrix exchange’ method. Results Phys. 2018, 9, 166–170. [Google Scholar] [CrossRef]
- Borgonovo, C.; Apelian, D.; Makhlouf, M.M. Aluminum nanocomposites for elevated temperature applications. JOM 2011, 63, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Mondol, S.; Alam, T.; Banerjee, R.; Kumar, S.; Chattopadhyay, K. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy. Mater. Sci. Eng. A 2017, 687, 221–231. [Google Scholar] [CrossRef]
- Awe, S.A.; Seifeddine, S.; Jarfors, A.E.; Lee, Y.C.; Dahle, A.K. Development of new Al-Cu-Si alloys for high temperature performance. Adv. Mater. Lett. 2017, 8, 695–701. [Google Scholar] [CrossRef]
- Rincon, E.; Lopez, H.; Cisneros, M.; Mancha, H. Temperature effects on the tensile properties of cast and heat treated aluminum alloy A319. Mater. Sci. Eng. A 2009, 519, 128–140. [Google Scholar] [CrossRef]
- Kumar, N.M.; Kumaran, S.S.; Kumaraswamidhas, L. High temperature investigation on EDM process of Al 2618 alloy reinforced with Si3N4, ALN and ZrB2 in-situ composites. J. Alloy. Compd. 2016, 663, 755–768. [Google Scholar] [CrossRef]
- Ramesh, C.; Keshavamurthy, R.; Channabasappa, B.; Ahmed, A. Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites. Mater. Sci. Eng. A 2009, 502, 99–106. [Google Scholar] [CrossRef]
- Du, X.; Gao, T.; Qian, Z.; Wu, Y.; Liu, X. The in-situ synthesis and strengthening mechanism of the multi-scale SiC particles in Al-Si-C alloys. J. Alloy. Compd. 2018, 750, 935–944. [Google Scholar] [CrossRef]
- Ozben, T.; Kilickap, E.; Cakir, O.; Çakır, O.; Ozben, T. Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J. Mater. Process. Technol. 2008, 198, 220–225. [Google Scholar] [CrossRef]
- Tian, W.-S.; Zhao, Q.; Zhao, C.-J.; Qiu, F.; Jiang, Q. The Dry Sliding Wear Properties of Nano-Sized TiCp/Al-Cu Composites at Elevated Temperatures. Materials 2017, 10, 939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zan, Y.; Zhou, Y.; Liu, Z.; Ma, G.; Wang, D.; Wang, Q.; Wang, W.; Xiao, B.; Ma, Z. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites. Mater. Des. 2019, 166, 107629. [Google Scholar] [CrossRef]
- Khodabakhshi, F.; Simchi, A. The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites. Mater. Des. 2017, 130, 26–36. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Y.F.; Tian, W.J.; Qian, Z.; Chen, H.W.; Wu, Y.Y.; Liu, X. A novel Al matrix composite reinforced by nano-AlNp network. Sci. Rep. 2016, 6, 34919. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Gautam, R.K.; Mohan, S. In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites. Mater. Des. 2015, 80, 129–136. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, X.; Chen, H.; Zhao, X.; Liu, X. Preferred orientation and interfacial structure in extruded nano-Al3BC/6061 Al. Mater. Des. 2017, 131, 23–31. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, Z.; Liu, X. Identification of novel dual-scale Al3BC particles in Al based composites. Mater. Des. 2016, 93, 283–290. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, X.; Hu, K.; Gao, T.; Liu, X. A novel (AlN + Si3N4)/Al composite with well-balanced strength and ductility. Mater. Sci. Eng. A 2018, 726, 113–119. [Google Scholar] [CrossRef]
- Bian, Y.; Gao, T.; Li, Z.; Sun, Q.; Ma, X.; Liu, X. In–situ synthesis of an Al composite reinforced with multi–scale Al12Mo, (Al, Zr, Si) and Al2O3 particles through a multi–stage reaction. Mater. Sci. Eng. A 2019, 762, 138069. [Google Scholar] [CrossRef]
- Schaffer, P.; Arnberg, L.; Dahle, A.K. Segregation of particles and its influence on the morphology of the eutectic silicon phase in Al–7wt.% Si alloys. Scr. Mater. 2006, 54, 677–682. [Google Scholar] [CrossRef]
- Firestein, K.L.; Corthay, S.; Steinman, A.; Matveev, A.; Kovalskii, A.; Sukhorukova, I.; Golberg, D.; Shtansky, D. High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Mater. Sci. Eng. A 2017, 681, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Nie, J.; Xu, Q.; Zhao, K.; Liu, X. Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles. Mater. Sci. Eng. A 2020, 770, 138488. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.; Ge, L.; Xu, W.; Yuan, Y. Study of the microstructure and mechanical properties of composites fabricated by the reaction method in an Al–TiO2–B2O3 system. Mater. Sci. Eng. A 2008, 478, 87–92. [Google Scholar] [CrossRef]
- Bian, Y.; Gao, T.; Liu, L.; Liu, G.; Liu, X. Liquid–solid reaction mechanism in Al–ZrO2 (–B2O3) system and the preparation of (α–Al2O3 + ZrB2/ZrAl3)/Al composites. J. Alloys Compd. 2020, 842, 155926. [Google Scholar] [CrossRef]
- Xu, Q.F.; Hu, K.; Ma, X.; Gao, T.; Liu, X. The response of room temperature and high temperature tensile properties to the microstructure variation of an AlN + Si3N4/Al composite by heat treatment. Mater. Sci. Eng. A 2018, 733, 211–219. [Google Scholar] [CrossRef]
- Zan, Y.N.; Zhou, Y.T.; Li, X.N.; Ma, G.N.; Liu, Z.Y.; Wang, Q.Z.; Wang, D.; Xiao, B.L.; Ma, Z.Y. Enhancing high–temperature strength and thermal stability of Al2O3/Al composites by high–temperature re–treatment of ultrafine Al powders. Acta Metall. Sin. Engl. 2020, 33, 913–921. [Google Scholar] [CrossRef]
- Kai, X.; Huang, S.; Wu, L.; Tao, R.; Peng, Y.; Mao, Z. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic–chemical in–situ reaction. J. Mater. Sci. Technol. 2019, 35, 2107–2114. [Google Scholar] [CrossRef]
- Han, G.; Zhang, W.; Zhang, G.; Feng, Z.; Wang, Y. High-temperature mechanical properties and fracture mechanisms of Al–Si piston alloy reinforced with in situ TiB2 particles. Mater. Sci. Eng. A 2015, 633, 161–168. [Google Scholar] [CrossRef]
- Gao, T.; Bian, Y.; Li, Z.; Xu, Q.; Yang, H.; Zhao, K.; Liu, X. Synthesis of a (ZrAl3 + AlN)/Al composite and the influence of particles content and element Cu on the microstructure and mechanical properties. J. Alloys Compd. 2019, 791, 730–738. [Google Scholar] [CrossRef]
- Joshi, S.P.; Eberl, C.; Cao, B.; Ramesh, K.T.; Hemker, K.J. On the Occurrence of Portevin–Le Châtelier Instabilities in Ultrafine-Grained 5083 Aluminum Alloys. Exp. Mech. 2009, 49, 207–218. [Google Scholar] [CrossRef]
- Zhang, Z.; Topping, T.; Li, Y.; Vogt, R.; Zhou, Y.; Haines, C.; Paras, J.; Kapoor, D.; Schoenung, J.M.; Lavernia, E.J. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr. Mater. 2011, 65, 652–655. [Google Scholar] [CrossRef]
- Chao, Z.; Zhang, L.; Jiang, L.; Qiao, J.; Xu, Z.; Chi, H.; Wu, G. Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system. J. Alloy. Compd. 2019, 775, 290–297. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Y.; Zhao, X.; Gao, T.; Chen, H.; Liu, X. Influence mechanisms of Cu or Fe on the microstructures and tensile properties at 350 °C of network AlNp reinforced Al composites. J. Alloy. Compd. 2018, 740, 452–460. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M.W.; Ramesh, K.T.; Ye, J.; Schoenung, J.M.; Chin, E.S.C. Tensile behavior and dynamic failure of aluminum 6092/B4C composites. Mater. Sci. Eng. A 2006, 433, 70–82. [Google Scholar] [CrossRef]
Tensile Properties | Experiment Temperature (°C) | |||
---|---|---|---|---|
25 | 250 | 350 | 450 | |
UTS (MPa) | 371 ± 6 | 233 ± 10 | 154 ± 15 | 104 ± 5 |
EI (%) | 8.1 ± 1.1 | 2.1 ± 0.5 | 1.8 ± 0.1 | 1.2 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Y.; Gao, T.; Zhao, Y.; Liu, G.; Liu, X. Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature. Materials 2020, 13, 4048. https://doi.org/10.3390/ma13184048
Bian Y, Gao T, Zhao Y, Liu G, Liu X. Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature. Materials. 2020; 13(18):4048. https://doi.org/10.3390/ma13184048
Chicago/Turabian StyleBian, Yihan, Tong Gao, Yongfeng Zhao, Guiliang Liu, and Xiangfa Liu. 2020. "Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature" Materials 13, no. 18: 4048. https://doi.org/10.3390/ma13184048
APA StyleBian, Y., Gao, T., Zhao, Y., Liu, G., & Liu, X. (2020). Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature. Materials, 13(18), 4048. https://doi.org/10.3390/ma13184048