Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Williams, J.C.; Starke, A.E. Progress in structural materials for aerospace. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Liu, S.; Chang, K.; Mráz, S.; Chen, X.; Hans, M.; Music, D.; Primetzhofer, D.; Schneider, J.M. Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films. Acta Mater. 2019, 165, 615–625. [Google Scholar] [CrossRef]
- Gao, T.; Li, Z.; Hu, K.; Han, M.; Liu, X. Synthesizing (ZrAl3 + AlN)/Mg–Al composites by a ‘matrix exchange’ method. Results Phys. 2018, 9, 166–170. [Google Scholar] [CrossRef]
- Borgonovo, C.; Apelian, D.; Makhlouf, M.M. Aluminum nanocomposites for elevated temperature applications. JOM 2011, 63, 57–64. [Google Scholar] [CrossRef]
- Mondol, S.; Alam, T.; Banerjee, R.; Kumar, S.; Chattopadhyay, K. Development of a high temperature high strength Al alloy by addition of small amounts of Sc and Mg to 2219 alloy. Mater. Sci. Eng. A 2017, 687, 221–231. [Google Scholar] [CrossRef]
- Awe, S.A.; Seifeddine, S.; Jarfors, A.E.; Lee, Y.C.; Dahle, A.K. Development of new Al-Cu-Si alloys for high temperature performance. Adv. Mater. Lett. 2017, 8, 695–701. [Google Scholar] [CrossRef]
- Rincon, E.; Lopez, H.; Cisneros, M.; Mancha, H. Temperature effects on the tensile properties of cast and heat treated aluminum alloy A319. Mater. Sci. Eng. A 2009, 519, 128–140. [Google Scholar] [CrossRef]
- Kumar, N.M.; Kumaran, S.S.; Kumaraswamidhas, L. High temperature investigation on EDM process of Al 2618 alloy reinforced with Si3N4, ALN and ZrB2 in-situ composites. J. Alloy. Compd. 2016, 663, 755–768. [Google Scholar] [CrossRef]
- Ramesh, C.; Keshavamurthy, R.; Channabasappa, B.; Ahmed, A. Microstructure and mechanical properties of Ni–P coated Si3N4 reinforced Al6061 composites. Mater. Sci. Eng. A 2009, 502, 99–106. [Google Scholar] [CrossRef]
- Du, X.; Gao, T.; Qian, Z.; Wu, Y.; Liu, X. The in-situ synthesis and strengthening mechanism of the multi-scale SiC particles in Al-Si-C alloys. J. Alloy. Compd. 2018, 750, 935–944. [Google Scholar] [CrossRef]
- Ozben, T.; Kilickap, E.; Cakir, O.; Çakır, O.; Ozben, T. Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J. Mater. Process. Technol. 2008, 198, 220–225. [Google Scholar] [CrossRef]
- Tian, W.-S.; Zhao, Q.; Zhao, C.-J.; Qiu, F.; Jiang, Q. The Dry Sliding Wear Properties of Nano-Sized TiCp/Al-Cu Composites at Elevated Temperatures. Materials 2017, 10, 939. [Google Scholar] [CrossRef] [PubMed]
- Zan, Y.; Zhou, Y.; Liu, Z.; Ma, G.; Wang, D.; Wang, Q.; Wang, W.; Xiao, B.; Ma, Z. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites. Mater. Des. 2019, 166, 107629. [Google Scholar] [CrossRef]
- Khodabakhshi, F.; Simchi, A. The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nanocomposites. Mater. Des. 2017, 130, 26–36. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Y.F.; Tian, W.J.; Qian, Z.; Chen, H.W.; Wu, Y.Y.; Liu, X. A novel Al matrix composite reinforced by nano-AlNp network. Sci. Rep. 2016, 6, 34919. [Google Scholar] [CrossRef]
- Kumar, N.; Gautam, R.K.; Mohan, S. In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites. Mater. Des. 2015, 80, 129–136. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, X.; Chen, H.; Zhao, X.; Liu, X. Preferred orientation and interfacial structure in extruded nano-Al3BC/6061 Al. Mater. Des. 2017, 131, 23–31. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, Z.; Liu, X. Identification of novel dual-scale Al3BC particles in Al based composites. Mater. Des. 2016, 93, 283–290. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, X.; Hu, K.; Gao, T.; Liu, X. A novel (AlN + Si3N4)/Al composite with well-balanced strength and ductility. Mater. Sci. Eng. A 2018, 726, 113–119. [Google Scholar] [CrossRef]
- Bian, Y.; Gao, T.; Li, Z.; Sun, Q.; Ma, X.; Liu, X. In–situ synthesis of an Al composite reinforced with multi–scale Al12Mo, (Al, Zr, Si) and Al2O3 particles through a multi–stage reaction. Mater. Sci. Eng. A 2019, 762, 138069. [Google Scholar] [CrossRef]
- Schaffer, P.; Arnberg, L.; Dahle, A.K. Segregation of particles and its influence on the morphology of the eutectic silicon phase in Al–7wt.% Si alloys. Scr. Mater. 2006, 54, 677–682. [Google Scholar] [CrossRef]
- Firestein, K.L.; Corthay, S.; Steinman, A.; Matveev, A.; Kovalskii, A.; Sukhorukova, I.; Golberg, D.; Shtansky, D. High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Mater. Sci. Eng. A 2017, 681, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Nie, J.; Xu, Q.; Zhao, K.; Liu, X. Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles. Mater. Sci. Eng. A 2020, 770, 138488. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.; Ge, L.; Xu, W.; Yuan, Y. Study of the microstructure and mechanical properties of composites fabricated by the reaction method in an Al–TiO2–B2O3 system. Mater. Sci. Eng. A 2008, 478, 87–92. [Google Scholar] [CrossRef]
- Bian, Y.; Gao, T.; Liu, L.; Liu, G.; Liu, X. Liquid–solid reaction mechanism in Al–ZrO2 (–B2O3) system and the preparation of (α–Al2O3 + ZrB2/ZrAl3)/Al composites. J. Alloys Compd. 2020, 842, 155926. [Google Scholar] [CrossRef]
- Xu, Q.F.; Hu, K.; Ma, X.; Gao, T.; Liu, X. The response of room temperature and high temperature tensile properties to the microstructure variation of an AlN + Si3N4/Al composite by heat treatment. Mater. Sci. Eng. A 2018, 733, 211–219. [Google Scholar] [CrossRef]
- Zan, Y.N.; Zhou, Y.T.; Li, X.N.; Ma, G.N.; Liu, Z.Y.; Wang, Q.Z.; Wang, D.; Xiao, B.L.; Ma, Z.Y. Enhancing high–temperature strength and thermal stability of Al2O3/Al composites by high–temperature re–treatment of ultrafine Al powders. Acta Metall. Sin. Engl. 2020, 33, 913–921. [Google Scholar] [CrossRef]
- Kai, X.; Huang, S.; Wu, L.; Tao, R.; Peng, Y.; Mao, Z. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic–chemical in–situ reaction. J. Mater. Sci. Technol. 2019, 35, 2107–2114. [Google Scholar] [CrossRef]
- Han, G.; Zhang, W.; Zhang, G.; Feng, Z.; Wang, Y. High-temperature mechanical properties and fracture mechanisms of Al–Si piston alloy reinforced with in situ TiB2 particles. Mater. Sci. Eng. A 2015, 633, 161–168. [Google Scholar] [CrossRef]
- Gao, T.; Bian, Y.; Li, Z.; Xu, Q.; Yang, H.; Zhao, K.; Liu, X. Synthesis of a (ZrAl3 + AlN)/Al composite and the influence of particles content and element Cu on the microstructure and mechanical properties. J. Alloys Compd. 2019, 791, 730–738. [Google Scholar] [CrossRef]
- Joshi, S.P.; Eberl, C.; Cao, B.; Ramesh, K.T.; Hemker, K.J. On the Occurrence of Portevin–Le Châtelier Instabilities in Ultrafine-Grained 5083 Aluminum Alloys. Exp. Mech. 2009, 49, 207–218. [Google Scholar] [CrossRef]
- Zhang, Z.; Topping, T.; Li, Y.; Vogt, R.; Zhou, Y.; Haines, C.; Paras, J.; Kapoor, D.; Schoenung, J.M.; Lavernia, E.J. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr. Mater. 2011, 65, 652–655. [Google Scholar] [CrossRef]
- Chao, Z.; Zhang, L.; Jiang, L.; Qiao, J.; Xu, Z.; Chi, H.; Wu, G. Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system. J. Alloy. Compd. 2019, 775, 290–297. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, Y.; Zhao, X.; Gao, T.; Chen, H.; Liu, X. Influence mechanisms of Cu or Fe on the microstructures and tensile properties at 350 °C of network AlNp reinforced Al composites. J. Alloy. Compd. 2018, 740, 452–460. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M.W.; Ramesh, K.T.; Ye, J.; Schoenung, J.M.; Chin, E.S.C. Tensile behavior and dynamic failure of aluminum 6092/B4C composites. Mater. Sci. Eng. A 2006, 433, 70–82. [Google Scholar] [CrossRef]
Tensile Properties | Experiment Temperature (°C) | |||
---|---|---|---|---|
25 | 250 | 350 | 450 | |
UTS (MPa) | 371 ± 6 | 233 ± 10 | 154 ± 15 | 104 ± 5 |
EI (%) | 8.1 ± 1.1 | 2.1 ± 0.5 | 1.8 ± 0.1 | 1.2 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Y.; Gao, T.; Zhao, Y.; Liu, G.; Liu, X. Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature. Materials 2020, 13, 4048. https://doi.org/10.3390/ma13184048
Bian Y, Gao T, Zhao Y, Liu G, Liu X. Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature. Materials. 2020; 13(18):4048. https://doi.org/10.3390/ma13184048
Chicago/Turabian StyleBian, Yihan, Tong Gao, Yongfeng Zhao, Guiliang Liu, and Xiangfa Liu. 2020. "Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature" Materials 13, no. 18: 4048. https://doi.org/10.3390/ma13184048
APA StyleBian, Y., Gao, T., Zhao, Y., Liu, G., & Liu, X. (2020). Synthesis of an Al-Based Composite Reinforced by Multi-Phase ZrB2, Al3BC and Al2O3 with Good Mechanical and Thermal Properties at Elevated Temperature. Materials, 13(18), 4048. https://doi.org/10.3390/ma13184048