Dissolution of Metals in Different Bromide-Based Systems: Electrochemical Measurements and Spectroscopic Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- Sol. A: 2 M KBr (pH = 6);
- -
- Sol. B: 2 M KBr + 0.5 M HBr (pH = 0.3);
- -
- Sol. C: 2 M KBr + 0.5 M HBr (pH = 0.3) + 0.01 M Br2; and
- -
- Sol. D: 2 M KBr + 0.5 M HBr (pH = 0.3) + 0.001 M Br2.
2.2. Electrochemical Measurements
2.3. X-ray Photoelectron Spectroscopy Measurements
2.4. X-ray Diffraction Measurements
3. Results and Discussions
3.1. Potentiodynamic Polarization Measurements
3.2. Electrochemical Impedance Spectroscopy
3.2.1. Copper
3.2.2. Zinc
3.2.3. Tin
3.2.4. Lead
3.2.5. Iron
3.3. Ex-Situ Examinations
3.3.1. XRD Measurements
3.3.2. XPS Measurements
Cu Samples
Zn Samples
Sn Samples
Pb Samples
Fe Samples
4. Conclusions
- Electrochemical measurements showed that the addition of bromine to the system favors to a great extent the dissolution process of all studied metals as compared to bromine-free electrolytes. Better understanding of the reaction mechanisms and evaluating the electrochemical parameters of the systems are necessary before any technological approach. The results of the study concern the dissolution processes, but at the same time they open a real possibility to recover the metals of practical importance from bromine-based systems.
- In the investigated experimental conditions, the highest dissolution rates of the metals were obtained in acidic bromide solution containing 0.01 M Br2 and they vary in the following order: Zn >> Sn > Pb > Fe> Cu.
- XPS chemical assessment allowed the identification of the dissolution products formed on the metallic surfaces after exposure to bromine-containing solution in initial stages of the corrosion process. They consist mainly of metallic oxides in the case of Cu, Zn, Sn and Fe samples, while the presence of a layer of PbBr2 was noticed on the Pb surface.
- XRD measurements showed that the immersion of the metals in different bromide-based electrolytes induces structural modifications for all electrodes. From the XRD diffractograms obtained on all studied metals, a preferential orientation tendency of the crystallites of the corrosion products was observed according to certain crystallization planes.
- The bromide-based systems are promising alternatives for lixiviants in hydrometallurgical route of metals recovery from WPCBs. Since the major economic driver for WPCBs recycling relies on the efficient metal recovery, in a first step, an effective dissolution of the raw material is necessary. The results of our work show that all studied metals could be successfully leached by using bromine-based systems and indicate good premises for selective and efficient metal recovery through a multi-step hydrometallurgical processing route.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kaya, M. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag. 2016, 57, 64–90. [Google Scholar] [CrossRef] [PubMed]
- Montero, R.; Guevara, A.; De la Torre, E. Recovery of gold, silver, copper and niobium from printed circuit boards using leaching column. J. Earth Sci. Eng. 2012, 2, 590–595. [Google Scholar]
- Ha, V.H.; Lee, J.; Jeong, J.; Haia, H.T.; Jha, M.K. Thiosulfate leaching of gold from waste mobile phones. J. Hazard. Mater. 2010, 178, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, C.; Fornari, P.; Massidda, R.; Vegliò, F.; Ubaldini, S. Thiosulphate leaching for gold hydrometallurgy. Hydrometallurgy 1995, 39, 265–276. [Google Scholar] [CrossRef]
- Behnamfard, A.; Salarirad, M.M.; Veglio, F. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manag. 2013, 33, 2354–2363. [Google Scholar] [CrossRef]
- Jing-ying, L.; Xiu-li, X.; Wen-quan, L. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manag. 2012, 32, 1209–1212. [Google Scholar] [CrossRef]
- Birloaga, I.; De Michelis, I.; Ferella, F.; Bazatu, M.; Veglio, F. Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery. Waste Manag. 2013, 33, 935–941. [Google Scholar] [CrossRef]
- Kumar, M.; Lee, J.; Kim, M.; Jeong, J.; Yoo, K. Leaching of metals from waste printed circuit boards (WPCBs) using sulfuric acid and nitric acids. Environ. Eng. Manag. J. 2014, 13, 2601–2607. [Google Scholar] [CrossRef]
- Syed, S. A green technology for recovery of gold from non-metallic secondary sources. Hydrometallurgy 2006, 82, 48–53. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, D.; Chen, L.; Huang, M.H. Gold leaching from waste printed circuit board by iodine process. Nonferrous. Met. 2010, 62, 88–90. [Google Scholar]
- Altansukh, B.; Haga, K.; Ariunbolor, N.; Kawamura, S.; Shibayama, A. Leaching and adsorption of gold from waste printed circuit boards using iodine-iodide solution and activated carbon. Eng. J. 2016, 20, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Serpe, A.; Rigoldi, A.; Marras, C.; Artizzu, F.; Mercuri, M.L.; Deplano, P. Chameleon behaviour of iodine in recovering noble-metals from WEEE: Towards sustainability and zero waste. Green Chem. 2015, 17, 2208–2216. [Google Scholar] [CrossRef] [Green Version]
- Sahin, M.; Akcil, A.; Erust, C.; Altynbek, S.; Gahan, C.S.; Tuncuk, A. A potential alternative for precious metal recovery from e-waste: Iodine leaching. Sep. Sci. Technol. 2015, 50, 2587–2595. [Google Scholar] [CrossRef]
- Quinet, P.; Proost, J.; Van Lierde, A. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Min. Metall. Process 2005, 22, 17–22. [Google Scholar] [CrossRef]
- Sousa, R.; Futuro, A.; Fiúza, A.; Vila, M.C.; Dinis, M.L. Bromine leaching as an alternative method for gold dissolution. Min. Eng. 2018, 118, 16–23. [Google Scholar] [CrossRef]
- Melashvili, M.; Fleming, C.; Dymov, I.; Manimaran, M.; O’Day, J. Study of gold leaching with bromine and bromide and the influence of sulphide minerals on this reaction. In Proceedings of the Conference of Metallurgists (COM 2014), Vancouver, BC, Canada, 28 September–1 October 2014; Canadian Institute of Mining, Metallurgy and Petroleum: Westmount, QC, Canada, 2014. ISBN 978-1-926872-24-7. [Google Scholar]
- Hojo, M.; Iwasaki, S.; Okamura, K. Pure gold dissolution with hydrogen peroxide as the oxidizer in HBr or HI solution. J. Mol. Liq. 2017, 246, 372–378. [Google Scholar] [CrossRef]
- Dorneanu, S.A. Electrochemical recycling of waste printed circuit boards in bromide media. Part I: Preliminary leaching and dismantling tests. Studia Univ. Babeş-Bolyai Chem. 2017, 62, 177–186. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Marusic, K.; Otmacic Curkovic, H.; Takenouti, H. Inhibiting effect of 4-methyl-1-p-tolylimidazole to the corrosion of bronze patinated in sulphate medium. Electrochim. Acta 2011, 56, 7491–7502. [Google Scholar] [CrossRef]
- Ives, M.; Lu, Y.; Luo, J. Cathodic reactions involved in metallic corrosion in chlorinated saline environments. Corros. Sci. 1991, 32, 91–102. [Google Scholar] [CrossRef]
- Aben, T. Anodic polarization behavior of copper in aqueous bromide and bromide/benzotriazole solutions. J. Electrochem. Soc. 1995, 142, 398. [Google Scholar] [CrossRef]
- Brolo, A.G.; Temperini, M.L.A.; Agostinho, S.M.L. Copper dissolution in bromide medium in the absence and presence of hexamethylenetetramine (HMTA). Electrochim. Acta 1998, 44, 559–571. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Domene, R.M.; Blasco-Tamarit, E.; García-García, D.M.; García-Antón, J. Thermogalvanic effects on the corrosion of copper in heavy brine LiBr solutions. Corros. Sci. 2012, 63, 304–315. [Google Scholar] [CrossRef]
- Baugh, L.M. Corrosion and polarization characteristics of zinc in neutral-acid media-I. Pure zinc in solutions of various sodium salts. Electrochim. Acta 1979, 24, 657–667. [Google Scholar] [CrossRef]
- Hassan, H.H.; Fahmy, K. Pitting corrosion of tin by acetate anion in acidic media. Int. J. Electrochem. Sci. 2008, 3, 29–43. [Google Scholar]
- El Boraei, N.F.; Abd El Rehim, S.S. Electrochemical behavior of tin anode in ascorbic acid solutions. Mater. Chem. Phys. 2018, 215, 332–338. [Google Scholar] [CrossRef]
- Abd El Rehim, S.S.; Hassan, H.H. Anodic behaviour of tin in maleic acid solution and the effect of some inorganic inhibitors. Corros. Sci. 2004, 46, 1071–1082. [Google Scholar] [CrossRef]
- Johnson, J.W.; Liu, E.C. The anodic dissolution of tin in acidic chloride solutions. J. Less-Common Metals 1974, 34, 113–120. [Google Scholar] [CrossRef]
- Barradas, R.G.; Belinko, K.; Ambrose, J. Electrochemical behavior of the lead electrode in HCl and NaCl aqueous electrolytes. Can. J. Chem. 1975, 53, 389–406. [Google Scholar] [CrossRef]
- Helal, N.H.; El-Rabiee, M.M.; Abd El-Hafez, G.M.; Badawy, W.A. Environmentally safe corrosion inhibition of Pb in aqueous solutions. J. Alloy. Compd. 2008, 456, 372–378. [Google Scholar] [CrossRef]
- Tanno, K.; Itoh, M.; Takahashi, T.; Yashiro, H.; Kumagai, N. The corrosion of carbon steel in lithium bromide solution at moderate temperatures. Corros. Sci. 1993, 34, 1441–1451. [Google Scholar] [CrossRef]
- Popova, A.; Christov, M.; Vasilev, A. Mono- and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors. Part II: Electrochemical impedance and polarisation resistance results. Corros. Sci. 2011, 53, 1770–1777. [Google Scholar] [CrossRef]
- Raistrick, I.D.; MacDonald, J.R.; Franceschetti, D.R. The Electrical Analogs of Physical and Chemical Processes. In Impedance Spectroscopy Emphasizing Solid Materials and Systems; MacDonald, J.R., Ed.; John Wiley & Sons: New York, NY, USA, 1987; pp. 27–84. [Google Scholar]
- Sherif, E.M.; Park, S.M. Inhibition of copper corrosion in acidic pickling solutions by N-phenyl-1,4-phenylenediamine. Electrochim. Acta 2006, 51, 4665–4673. [Google Scholar] [CrossRef]
- Abelev, E.; Starosvetsky, D.; Ein-Eli, Y. Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts. Langmuir 2007, 23, 11281–11288. [Google Scholar] [CrossRef]
- Assaf, F.H.; Abd El-Rehiem, S.S.; Zaky, A.M. Pitting corrosion of zinc in neutral halide solutions. Mater. Chem. Phys. 1999, 58, 58–63. [Google Scholar] [CrossRef]
- Chiu, S.L.; Selman, J.R. Determination of electrode kinetics by corrosion potential measurements: Zinc corrosion by bromine. J. App. Electrochem. 1992, 22, 28–37. [Google Scholar] [CrossRef]
- Cachet, C.; Wiart, R. Reaction mechanism for zinc dissolution in chloride electrolytes. J. Electroanal. Chem. 1981, 129, 103–114. [Google Scholar] [CrossRef]
- Ahlberg, E.; Anderson, H. Simulating the impedance spectroscopy from a mechanistic point of view: Theory and Simulations. Acta Chem. Scand. 1992, 46, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cachet, C.; Ganne, F.; Maurin, G.; Petitjean, J.; Vivier, V.; Wiart, R. EIS investigation of zinc dissolution in aerated sulfate medium, Part I: Bulk zinc. Electrochim. Acta 2001, 47, 509–518. [Google Scholar] [CrossRef]
- Deslouis, C.; Duprat, M.; Tournillon, C. The kinetics of zinc dissolution in aerated sodium sulphate solutions. a measurement of the corrosion rate by impedance techniques. Corros. Sci. 1989, 29, 13–30. [Google Scholar] [CrossRef]
- Pilbáth, A.; Nyikos, L.; Bertóti, I.; Kálmán, E. Zinc corrosion protection with 1,5-diphosphono-pentane. Corros. Sci. 2008, 50, 3314–3321. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 2717–2730. [Google Scholar] [CrossRef]
- Magaino, S.; Soga, M.; Sobue, K.; Kawaguchi, A.; Ishida, N.; Imai, H. Zinc corrosion in simulated acid rain. Electrochim. Acta 1999, 44, 4307–4312. [Google Scholar] [CrossRef]
- Cachet, C.; Wiart, R. The kinetics of zinc dissolution in chloride electrolytes: Impedance measurements and electrode morphology. J. Electroanal. Chem. 1980, 111, 235–246. [Google Scholar] [CrossRef]
- El Ibrahimi, B.; Jmiai, A.; El Mouaden, K.; Baddouh, A.; El Issami, S.; Bazzi, L.; Hilali, M. Effect of solution’s pH and molecular structure of three linear α-amino acids on the corrosion of tin in salt solution: A combined experimental and theoretical approach. J. Mol. Struct. 2019, 1196, 105–118. [Google Scholar] [CrossRef]
- Huang, B.X.; Tornatore, P.; Li, Y.-S. IR and Raman spectroelectrochemical studies of corrosion films on tin. Electrochim. Acta 2001, 46, 671–679. [Google Scholar] [CrossRef]
- Jafarian, M.; Gobal, F.; Danaee, I.; Biabani, R.; Mahjani, M.G. Electrochemical studies of the pitting corrosion of tin in citric acid solution containing Cl−. Electrochim. Acta 2008, 53, 4528–4536. [Google Scholar] [CrossRef]
- Foad El-Sherbini, E.E.; Abd-El-Wahab, S.M.; Amin, M.A.; Deyab, M.A. Electrochemical behavior of tin in sodium borate solutions and the effect of halide ions and some inorganic inhibitors. Corros. Sci. 2006, 48, 1885–1898. [Google Scholar] [CrossRef]
- Yang, C.J.; Ko, Y.; Park, S.M. Fourier transform electrochemical impedance spectroscopic studies on anodic reaction of lead. Electrochim. Acta 2012, 7, 615–622. [Google Scholar] [CrossRef]
- Chen, Y.; Jepson, W.P. EIS measurement for corrosion monitoring under multiphase flow conditions. Electrochim. Acta 1999, 44, 4453–4464. [Google Scholar] [CrossRef]
- Keddam, M.; Mattos, O.R.; Takenouti, H. Reaction model for iron dissolution studied by electrode impedance II. determination of the reaction model. J. Electrochem. Soc. 1981, 128, 257–266. [Google Scholar] [CrossRef]
- Amin, M.A.; Khaled, K.F.; Mohsen, Q.; Arida, H.A. A study of the inhibition of iron corrosion in HCl solutions by some amino acids. Corros. Sci. 2010, 52, 1684–1695. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Smedley, S.I. The Dissolution mechanism of iron in chloride solutions. J. Electrochem. Soc. 1986, 133, 2240–2244. [Google Scholar] [CrossRef]
- Montañés, M.T.; Pérez-Herranz, V.; García-Antón, J.; Guiñón, J.L. Evolution with exposure time of copper corrosion in a concentrated lithium bromide solution. Characterization of corrosion products by energy-dispersive X-ray analysis and X-ray Diffraction. Corrosion 2006, 62, 64–73. [Google Scholar] [CrossRef]
- Biesinger, M.C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 2017, 49, 1325–1334. [Google Scholar] [CrossRef]
- Capece, F.M.; Dicastro, V.; Furlani, C.; Mattogno, G.; Fragale, C.; Gargano, M.; Rossi, M. “Copper chromite” catalysts: XPS structure elucidation and correlation with catalytic activity. J. Electron Spectrosc. Relat. Phenom. 1982, 27, 119–128. [Google Scholar] [CrossRef]
- Nakamura, T.; Tomizuka, H.; Takahashi, M.; Hoshi, T.J. Methods of powder sample mounting and their evaluations in XPS analysis. Surf. Sci. Soc. Jpn. 1995, 16, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Jolley, J.G.; Geesey, G.G.; Haukins, M.R.; Write, R.B.; Wichlacz, P.L. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide. Appl. Surf. Sci. 1989, 37, 469–480. [Google Scholar] [CrossRef]
- Koberstein, J.T. Quantitative analysis of copper oxide nanoparticle composition and structure by X-ray photoelectron spectroscopy. Chem. Mater. 2006, 18, 6054–6058. [Google Scholar] [CrossRef]
- Dube, C.E.; Workie, B.; Kounaves, S.P.; Robbat, A., Jr.; Aksu, M.L.; Davies, G. Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper-nickel complex. J. Electrochem. Soc. 1995, 142, 3357–3365. [Google Scholar] [CrossRef] [Green Version]
- Otamiri, J.C.; Andersson, S.L.T.; Andersson, A. Ammoxidation of toluene by YBa2Cu3O6+x and copper oxides: Activity and XPS studies. Appl. Catal. 1990, 65, 159–174. [Google Scholar] [CrossRef]
- Morgan, W.E.; Van Wazer, J.R.; Stec, W.J. Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates. J. Am. Chem. Soc. 1973, 95, 751–755. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1979. [Google Scholar] [CrossRef]
- Sharma, J.; Iqbal, Z. X-ray photoelectron spectroscopy of brominated (SN)x and S4N4. Chem. Phys. Lett. 1978, 56, 373–376. [Google Scholar] [CrossRef]
- Hosking, N.C.; Ström, M.A.; Shipway, P.H.; Rudd, C.D. Corrosion resistance of zinc–magnesium coated steel. Corros. Sci. 2007, 49, 3669–3695. [Google Scholar] [CrossRef]
- Sen, P.; Hegde, M.S.; Rao, C.N.R. Surface oxidation of cadmium, indium, tin and antimony by photoelectron and Auger spectroscopy. Appl. Surf. Sci. 1982, 10, 63–74. [Google Scholar] [CrossRef]
- Pederson, L.R. Two-dimensional chemical-state plot for lead using XPS. J. Electron. Spectrosc. Relat. Phenom. 1982, 28, 203–209. [Google Scholar] [CrossRef]
- Powell, C.J. Recommended auger parameters for 42 elemental solids. J. Electron. Spectrosc. Relat. Phenom. 2012, 185, 1–3. [Google Scholar] [CrossRef]
- Nefedov, V.I. A comparison of results of an ESCA study of nonconducting solids using spectrometers of different constructions. J. Electron. Spectrosc. Relat. Phenom. 1982, 25, 29–47. [Google Scholar] [CrossRef]
- Uhlig, I.; Szargan, R.; Nesbitt, H.W.; Laajalehto, K. Surface states and reactivity of pyrite and marcasite. Appl. Surf. Sci. 2001, 179, 222–229. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Marcus, P.; Grimal, J.M. The anodic dissolution and passivation of Ni-Cr-Fe alloys studied by ESCA. Corros. Sci. 1992, 33, 805–814. [Google Scholar] [CrossRef]
- Hawn, D.D.; DeKoven, B.M. Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf. Interface Anal. 1987, 10, 63–74. [Google Scholar] [CrossRef]
- Langevoort, J.C.; Sutherland, I.f.; Hanekamp, L.J.; Gellings, P.J. On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS. Appl. Surf. Sci. 1987, 28, 167–179. [Google Scholar] [CrossRef] [Green Version]
Solution | Ecorr (mV vs. Ref.) | Icorr (μA cm−2) | (mV dec−1) | (mV dec−1) |
---|---|---|---|---|
Cu | ||||
A | −316.7 | 10.7 | 70.8 | 879.0 |
B | −321.3 | 19.5 | 71.7 | 428.1 |
C | −251.1 | 146.2 | 72.3 | 198.0 |
D | −279.9 | 43.4 | 64.6 | - |
Zn | ||||
A | −972.0 | 8.4 | 12.6 | 479.1 |
B | −987.1 | 26580 | 145.6 | 104.9 |
C | −978.2 | 27960 | 143.8 | 123.6 |
D | −971.2 | 27790 | 159.3 | 97.1 |
Sn | ||||
A | −409.2 | 1.4 | 37.7 | 79.3 |
B | −503.5 | 13.4 | 23.4 | 187.1 |
C | −483.7 | 399.1 | 39.1 | 148.2 |
D | −481.3 | 92.2 | 29.2 | 164.5 |
Pb | ||||
A | −557.9 | 37.8 | 32.0 | 336.2 |
B | −557.9 | 37.8 | 32.0 | 336.2 |
C | −525.9 | 164.4 | 24.6 | 67.9 |
D | −527.3 | 50.4 | 25.2 | 108.3 |
Fe | ||||
A | −383.8 | 2.07 | 149.8 | nd |
B | −300.2 | 4.06 | 27.8 | 76.0 |
C | −254.2 | 157.4 | 23.5 | 164.5 |
Sol. | Re (Ω cm2) | Rct (Ω cm2) | Qdl (μF sn−1 cm−2) | ndl | Cdl (μF cm−2) | RF (Ω cm2) | QF (mF sn−1 cm−2) | nF | CF (mF cm−2) | W (S s1/2 cm−2) |
---|---|---|---|---|---|---|---|---|---|---|
A | 0.79 | 191.5 | 9.05 | 0.91 | 4.82 | 3783 | 0.44 | 0.46 | 0.71 | - |
B | 0.53 | 48.78 | 161.1 | 0.80 | 47.93 | 488.3 | 1.80 | 0.51 | 1.58 | - |
C | 0.56 | 21.54 | 212 | 0.79 | 50.64 | 38 | 0.23 | 0.95 | 0.18 | 0.19 |
Sol. | Re (Ω cm2) | Rct (Ω cm2) | Qdl (μF sn−1 cm−2) | ndl | Cdl (μFcm−2) | R1 (Ω cm2) | Q1 (μF sn-1 cm−2) | n1 | C1 (μF cm−2) | RL Ω cm2) | L (H cm2) | R2 (Ω cm2) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1.02 | 322.9 | 12.3 | 0.87 | 5.5 | 285.5 | 89.02 | 0.70 | 18.4 | 71.4 | 39.8 | - |
B | 0.67 | 0.87 | 6000 | 0.55 | 86.4 | - | - | - | - | 0.95 | 0.001 | 0.065 |
C | 0.59 | 0.29 | 7200 | 0.61 | 141.5 | - | - | - | - | 0.28 | 0.0002 | 0.046 |
Sol. | Re (Ω cm2) | Rf (Ω cm2) | Qf (μF sn−1 cm−2) | nf | Cf (μF cm−2) | Rct (Ω cm2) | Qdl (mF sn−1 cm−2) | ndl | Cdl (mF cm−2) | R (Ω cm2) | L (H cm2) |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 0.88 | 61860 | 34.15 | 0.91 | 36.94 | 41580 | 0.191 | 0.85 | 0.28 | - | - |
B | 0.65 | 0.90 | 16.84 | 0.99 | 16.84 | 90.13 | 0.72 | 0.81 | 0.39 | 30.36 | 18.35 |
C | 0.51 | 0.27 | 781 | 0.80 | 94.1 | 5.45 | 6.03 | 0.79 | 0.49 | 11.31 | - |
Sol. | Re (Ω cm2) | Rct (Ω cm2) | Qdl (μF sn−1 cm−2) | ndl | Cdl (μF cm−2) | R1 (Ω cm2) | Q1 (mF sn−1 cm−2) | n1 | C1 (mF cm−2) | W (S sec1/2 cm−2) |
---|---|---|---|---|---|---|---|---|---|---|
A | 0.94 | 19.63 | 210.0 | 0.84 | 74.16 | 1096 | 1.91 | 0.50 | 3.9 | - |
B | 0.58 | 0.87 | 285.0 | 0.88 | 91.9 | 125.7 | 1.58 | 0.68 | 0.25 | 0.06129 |
D | 0.55 | 0.80 | 565.0 | 0.87 | 170.0 | 13.39 | 2.15 | 0.78 | 0.79 | - |
Sol. | Re (Ω cm2) | Rct (Ω cm2) | Qdl μF sn−1 cm−2) | ndl | Cdl (μF cm−2) | R1 (Ω cm2) | Q1 μF sn−1 cm−2) | n1 | C1 (μF cm−2) | RL (Ω cm2) | L (H cm2) |
---|---|---|---|---|---|---|---|---|---|---|---|
A | 1.00 | 42360 | 116 | 0.83 | 155 | - | - | - | - | - | - |
B | 0.79 | 59.60 | 202 | 0.77 | 54.0 | 1594 | 48.0 | 0.91 | 37.7 | - | - |
C | 0.69 | 9.15 | 45.1 | 0.90 | 18.25 | 234.7 | 238 | 0.70 | 69.1 | 116.2 | 36.91 |
Sample | Relative Intensities Ratio | Sol. A | Sol. B | Sol. C |
---|---|---|---|---|
Cu | I(111)/I(220) | 1.01 | 1.05 | 1.10 |
Zn | I(002)/I(102) | 1.03 | 1.10 | - |
Sn | I(110)/I(211) | 0.97 | 1.01 | 1.05 |
Pb | I(110)/I(211) | 0.99 | 1.01 | 0.98 |
Fe | I(001)/I(201) | 1.10 | 1.12 | - |
Peak | Iteration | B.E. (eV) | FWHM (eV) |
---|---|---|---|
Cu 2p3/2 Cu (II) | 0 | 934.2 | 3.1 |
Cu 2p3/2 Cu (I) | 9 | 932.6 | 2.1 |
Level | Cu2+ (at %) | Cu1+/Cu0 (at %) |
---|---|---|
Iteration 0 (“as received” sample) | 83.7 | 16.3 |
Iteration 9 | 25.5 | 74.5 |
Peak | Oxidation State | Measured B.E. (eV) | K.E. (eV) | FWHM (eV) |
---|---|---|---|---|
Zn 2p3/2 | metallic | 1021.8 | - | 1.0 |
Zn 2p3/2 | Zn2+ | 1022.5 | - | 1.4 |
Zn LMM | metallic | - | 991.9 | 1.2 |
Zn LMM | Zn2+ | - | 987.5 | 3.0 |
Peak | Oxidation State | Compound | Measured B.E. (eV) | Reported B.E. (eV) | FWHM (eV) | References |
---|---|---|---|---|---|---|
Sn 3d5/2 metallic | 0 | Sn | 485.0 | 485.0 | 0.6 | [68] |
Sn 3d5/2 oxidized | 4+ | SnO2 | 486.8 | 486.6 | 1.2 | [65] |
Peak | Oxidation State | B.E. (eV) | FWHM (eV) |
---|---|---|---|
Pb 4f7/2 metallic | 0 | 137.0 | 1.0 |
Pb 4f7/2 oxidized | 2+ | 139.0 | 1.1 |
Peak | Oxidation State | Measured B.E. (eV) | FWHM (eV) | Reported B.E. (eV) | References |
---|---|---|---|---|---|
Fe 2p3/2 metallic | 0 | 706.8 | 1.0 | 706.8 | [44,72,73,74] |
Fe 2p3/2 multiplet | 0 | 707.7 | 1.0 | 0.9 (from main peak) | [44,72,73] |
Fe 2p3/2 (II) oxide | 2+ | 709.8 | 3.5 | 709.6–709.9 | [44,72,73,75] |
Fe 2p3/2 (II) satellite | 2+ | 716.1 | 3.5 | - | - |
Fe 2p3/2 (III) oxide | 3+ | 712.7 | 3.5 | 710.8–711.4 | [44,72,73,76] |
Fe 2p3/2 (III) satellite | 3+ | 719.3 | 3.5 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varvara, S.; Dorneanu, S.-A.; Okos, A.; Muresan, L.M.; Bostan, R.; Popa, M.; Marconi, D.; Ilea, P. Dissolution of Metals in Different Bromide-Based Systems: Electrochemical Measurements and Spectroscopic Investigations. Materials 2020, 13, 3630. https://doi.org/10.3390/ma13163630
Varvara S, Dorneanu S-A, Okos A, Muresan LM, Bostan R, Popa M, Marconi D, Ilea P. Dissolution of Metals in Different Bromide-Based Systems: Electrochemical Measurements and Spectroscopic Investigations. Materials. 2020; 13(16):3630. https://doi.org/10.3390/ma13163630
Chicago/Turabian StyleVarvara, Simona, Sorin-Aurel Dorneanu, Alexandru Okos, Liana Maria Muresan, Roxana Bostan, Maria Popa, Daniel Marconi, and Petru Ilea. 2020. "Dissolution of Metals in Different Bromide-Based Systems: Electrochemical Measurements and Spectroscopic Investigations" Materials 13, no. 16: 3630. https://doi.org/10.3390/ma13163630
APA StyleVarvara, S., Dorneanu, S.-A., Okos, A., Muresan, L. M., Bostan, R., Popa, M., Marconi, D., & Ilea, P. (2020). Dissolution of Metals in Different Bromide-Based Systems: Electrochemical Measurements and Spectroscopic Investigations. Materials, 13(16), 3630. https://doi.org/10.3390/ma13163630