Graphene Encapsulated Al Particles for Improvement of Thermal Conductivity in Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of GRAMCs by GO Coated on Al Surfaces
2.2. Characterizations
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Im, H.; Kim, J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon 2012, 50, 5429–5440. [Google Scholar] [CrossRef]
- Aravind, S.S.J.; Ramaprabhu, S. Graphene-mutlwalled carbon nanotube-based nanofluides for improved heat dissipation. RCS Adv. 2013, 3, 4199–4206. [Google Scholar]
- Miracle, D.B. Metal matrix composites-from science to technological significance. Compos. Sci. Technol. 2005, 65, 2526–2540. [Google Scholar] [CrossRef]
- Surappa, M.K. Aluminum matrix composites: Challenges and opportunities. Sadhana 2003, 28, 319–334. [Google Scholar] [CrossRef]
- Suk, J.W.; Piner, R.D.; An, J.; Ruoff, R.S. Mechanical properties of monolayer graphene oxide. Am. Chem. Soc. 2010, 13, 6557–6564. [Google Scholar] [CrossRef] [PubMed]
- Ovid’ko, I.A. Mechanical properties of graphene. Rev. Adv. Mater. Sci. 2013, 34, 1–11. [Google Scholar]
- Balandin, A.A. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Wang, S. Thermal expansion of graphene composites. Macromolecules 2009, 42, 5251–5255. [Google Scholar] [CrossRef]
- Goyal, V.; Balandin, A.A. Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials. Appl. Phys. Lett. 2012, 100, 073113. [Google Scholar] [CrossRef]
- Pérez-Bustamante, R.; Martínez-Sánchez, R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloy. Compd. 2014, 615, S578–S582. [Google Scholar] [CrossRef]
- Bisht, A.; Srivastava, M.; Lahiri, D. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater. Sci. Eng. A 2017, 695, 20–28. [Google Scholar] [CrossRef]
- Guan, R.; Wang, Y.; Zheng, S.; Chen, B. Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets. Mater. Sci. Eng. A 2019, 754, 437–446. [Google Scholar] [CrossRef]
- Ci, L.; Ryu, Z.Y.; Jin-Phillipp, N.Y.; Rühle, M. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Mater. 2006, 54, 5367–5375. [Google Scholar] [CrossRef]
- Atif, R.; Inam, F. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 2016, 7, 1174–1196. [Google Scholar] [CrossRef] [PubMed]
- Bastwros, M.; Zhu, C.; Zhang, K.; Wang, S.; Tang, X.D.; Wang, X.W.; Kim, G.-Y. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B 2014, 60, 111–118. [Google Scholar] [CrossRef]
- Lin, C.; Yang, L.L.; Zhi, M. A new method for few-layer graphene preparation via plasma-assisted ball milling. J. Alloy. Compd. 2017, 728, 578–584. [Google Scholar] [CrossRef]
- Jiang, L.; Fan, G.; Li, Z.Q. An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon 2011, 49, 1965–1971. [Google Scholar] [CrossRef]
- Boostani, A.F.; Tahamtanb, S.; Jiang, Z.Y. Enhanced tensile properties of aluminum matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos. Part A 2015, 68, 155–163. [Google Scholar] [CrossRef]
- Hu, C.G.; Zhai, X.Q.; Liu, L.L.; Zhao, Y.; Jiang, L.; Qu, L.T. Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. Sci. Rep. 2013, 3, 2065–2074. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, K.; Wei, T.; Yan, J.; Song, L.; Shao, B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 2010, 48, 1670–1692. [Google Scholar] [CrossRef]
- Dasari, B.L.; Morshed, M.; Brabazon, J.M.; Saher, S. Mechanical properties of graphene oxide reinforced aluminum matrix composites. Compos. Part B 2018, 145, 136–144. [Google Scholar] [CrossRef]
- Li, Z.; Fan, G.; Tan, Z.; Guo, Q.; Xiong, D.; Su, Y.; Zhang, D. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic absorption for fabrication of graphene/aluminum composites. Nanotechnology 2014, 25, 325601. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Geim, A.K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.; Cai, X.L.; Wang, K.J.; Sun, H.P.; Chen, Y.G. Interface reaction of CNTs/Al composites fabricated by high energy ball milling. Adv. Mater. Res. 2013, 750, 90–94. [Google Scholar] [CrossRef]
- Tian, W.; Li, S.; Wang, B.; Chen, X.; Liu, J.; Yu, M. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int. J. Miner. Met. Mater. 2016, 23, 723–729. [Google Scholar] [CrossRef]
- Streletskii, A.N.; Povstugar, I.V.; Borunova, A.B.; Lomaeva, S.F.; Butyagin, P.Y. Mechanochemical activation of aluminum. 4. Kinetics of mechanichemical synthesis of aluminum carbide. Colloid J. 2006, 68, 470–480. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.-J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazukiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Saboori, A.; Moheimani, S.K.; Fino, P. An overview of key challenges in the fabricated of metal matrix composites reinforced by graphene nanoplatelets. Metals 2018, 8, 172. [Google Scholar] [CrossRef]
- Saboori, A.; Pavese, M.; Fino, P. Microstructure and thermal conductivity of AL-graphene composites fabricated by powder metallurgy and hot rolling techniques. Acta Metall. Sin. Engl. Lett. 2017, 30, 675–687. [Google Scholar] [CrossRef]
GO C1s | Area (%) | Binding Energy (eV) | Al/GO C1s | Area (%) | Binding Energy (eV) |
---|---|---|---|---|---|
sp2 C-C | 15.97 | 284.56 | sp2 C-C | 23.03 | 284.25 |
sp3 C-C | 22.34 | 285.01 | sp3 C-C | 22.20 | 284.97 |
C-O | 42.82 | 286.93 | C-O | 38.69 | 286.58 |
C=O | 8.70 | 287.65 | C=O | 4.57 | 287.66 |
O-C=O | 10.17 | 288.72 | O-C=O | 11.51 | 288.82 |
Samples | Bulk Density (g/cm3) | Related Density (%) | Vicker’s Hardness (MPa) | Specific Heat (J/gK) | Thermal Diffusivity (mm2/s) | Thermal Conductivity (W/mK) |
---|---|---|---|---|---|---|
Raw Al | 2.699 | 99.93 | 91.83 | 0.899 | 85.27 | 206.9 |
Al/GO 0.1 wt.% | 2.694 | 99.78 | 107.67 | 0.907 | 90.18 | 220.4 |
Al/GO 0.2 wt.% | 2.696 | 99.85 | 117.80 | 0.916 | 91.85 | 226.8 |
Al/GO 0.3 wt.% | 2.693 | 99.74 | 129.83 | 0.922 | 95.87 | 238.0 |
Al/GO 0.4 wt.% | 2.685 | 99.44 | 123.50 | 0.928 | 90.36 | 225.2 |
Al/GO 0.5 wt.% | 2.686 | 99.48 | 114.99 | 0.935 | 86.95 | 218.4 |
Al/GO 0.6 wt.% | 2.677 | 99.15 | 104.50 | 0.938 | 84.94 | 213.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.; Tak, W.-S.; Mun, S.Y.; Nam, S.; Moon, S.Y.; Kim, W.S. Graphene Encapsulated Al Particles for Improvement of Thermal Conductivity in Composites. Materials 2020, 13, 3602. https://doi.org/10.3390/ma13163602
Hwang J, Tak W-S, Mun SY, Nam S, Moon SY, Kim WS. Graphene Encapsulated Al Particles for Improvement of Thermal Conductivity in Composites. Materials. 2020; 13(16):3602. https://doi.org/10.3390/ma13163602
Chicago/Turabian StyleHwang, Jinuk, Woo-Seong Tak, So Youn Mun, Sangyong Nam, Sook Young Moon, and Woo Sik Kim. 2020. "Graphene Encapsulated Al Particles for Improvement of Thermal Conductivity in Composites" Materials 13, no. 16: 3602. https://doi.org/10.3390/ma13163602
APA StyleHwang, J., Tak, W.-S., Mun, S. Y., Nam, S., Moon, S. Y., & Kim, W. S. (2020). Graphene Encapsulated Al Particles for Improvement of Thermal Conductivity in Composites. Materials, 13(16), 3602. https://doi.org/10.3390/ma13163602