Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview
Abstract
:1. Introduction
2. Tannic Acid
3. Antiviral Activity
4. Antibacterial Activity
5. Mechanism of Antimicrobial Activity
6. Tannic Acid-Based Biomaterials
7. Conclusions
Funding
Conflicts of Interest
References
- Zorofchian Moghadamtousi, S.; Abdul Kadir, H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. Biomed. Res. Int. 2014, 186864. [Google Scholar] [CrossRef] [PubMed]
- Tareq Hassan Khan, M.; Ather, A.; Thompson, K.D.; Gambari, R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res. 2005, 67, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Kumara Swamy, M.; Sayeed Akhtar, M.; Rani Sinniah, U. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid. Based Complement. Alternat. Med. 2016, 3012462. [Google Scholar]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting microbial biofilms: Current and prospective therapeutic strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Park, T.G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 2007, 59, 249–262. [Google Scholar] [CrossRef]
- Vasilev, K.; Cook, J.; Griesser, H.J. Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 2009, 6, 553–567. [Google Scholar] [CrossRef]
- Thakur, R.A.; Florek, C.A.; Kohn, J.; Michniak, B.B. Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int. J. Pharm. 2008, 364, 87–93. [Google Scholar] [CrossRef]
- Karp, J.M.; Langer, R. Development and therapeutic applications of advanced biomaterials. Curr. Opin. Biotechnol. 2007, 18, 454–459. [Google Scholar] [CrossRef]
- O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95. [Google Scholar]
- Kopecek, J. Hydrogel biomaterials: A smart future? Biomaterials 2007, 28, 5185–5192. [Google Scholar] [CrossRef] [Green Version]
- Cheung, H.Y.; Lau, K.T.; Li, T.P.; Hui, D. A critical review on polymer-based bio-engineered materials for scaffold development. Comp. B Eng. 2007, 38, 291–300. [Google Scholar] [CrossRef]
- Sabir, M.I.; Xu, X.; Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009, 44, 5713–5724. [Google Scholar] [CrossRef]
- Chahal, S.; Kumar, A.; Hussain, F.S.J. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J. Biomater. Sci. Polym. Ed. 2019, 30, 1308–1355. [Google Scholar] [CrossRef] [PubMed]
- Kyziol, A.; Khan, W.; Sebastian, V.; Kyziol, K. Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers. Chem. Eng. J. 2020, 385, 123888. [Google Scholar] [CrossRef]
- Azeredo, H.M.C.; Waldron, K.W. Crosslinking in polysaccharide and protein films and coatings for food contact—A review. Trends Food Sci. Technol. 2016, 52, 109–122. [Google Scholar] [CrossRef]
- Silva, R.F.; Pogacnik, L. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidant 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Archivio, D.; Filesi, M.; di Benedetto, C.; Gargiulo, R.; Giovannini, R.; Masella, C.R. Polyphenols, dietary sources and bioavailability. Ann.-Ist. Super. Di Sanita 2017, 43, 348. [Google Scholar]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2015, 81, 215S–217S. [Google Scholar] [CrossRef]
- Guan, S.; Zhu, K.; Dong, Y.; Li, H.; Yang, S.; Wang, S.; Shan, Y. Exploration of binding mechanism of a potential streptococcus pneumoniae neuraminidase inhibitor from herbaceous plants by molecular simulation. Int. J. Mol. Sci. 2020, 21, 1003. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Calvo, A.; de Oya, N.J.; Martin-Acebes, M.A.; Garcia-Moruno, E.; Saiz, J.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses west nile virus, zika virus, and dengue virus. Front. Microbiol. 2017, 8, 1314. [Google Scholar] [CrossRef] [PubMed]
- Aelenei, N.; Popa, M.I.; Novac, O.; Lisa, G.; Balaita, L. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release. J. Mater. Sci. Mater. Med. 2009, 20, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Dabbaghi, A.; Kabiri, K.; Ramazani, A.; Zohuriaan-Mehr, M.J.; Jahandideh, A. Synthesis of bio-based internal and external cross-linkers based on tannic acid for preparation of antibacterial superabsorbents. Polym. Adv. Technol. 2009, 30, 2894–2905. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Božič, M.; Gorgieva, S.; Kokol, V. Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohyd. Polym. 2012, 89, 854–864. [Google Scholar]
- Kim, T.J.; Silva, J.L.; Kim, M.K.; Jung, Y.S. Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chem. 2010, 118, 740–764. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, Y.; Peng, J.; Zhao, X.; Liu, J.; Zhao, J.; Jiang, Z. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride. J. Membr. Sci. 2013, 429, 235–242. [Google Scholar] [CrossRef]
- Gómez-Taylor Corominas, B.; García Mateo, J.V.; Lahuerta Zamora, L.; Martínez Calatayud, J. Determination of tannic acid by direct chemiluminescence in a FIA assembly. Talanta 2002, 58, 1243–1251. [Google Scholar] [CrossRef]
- Bouki, E.; Dimitriadis, V.K.; Kaloyianni, M.; Dailianis, S. Antioxidant and pro-oxidant challenge of tannic acid in mussel hemocytes exposed to cadmium. Mar. Environ. Res. 2013, 85, 13–20. [Google Scholar] [CrossRef]
- Rivero, S.; García, M.A.; Pinotti, A. Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohyd. Polym. 2010, 82, 270–276. [Google Scholar] [CrossRef]
- Gülçin, İ.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H. Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Uyama, H. Artificial polymeric flavonoids: Synthesis and applications. Macromol. Biosci. 2007, 7, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.R.; Sabir, M.S.; Ahmad, S.D.; Boligon, A.A.; Athayde, M.L. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem. 2014, 147, 10–16. [Google Scholar] [CrossRef]
- Theisen, L.L.; Erdelmeier, C.A.J.; Spoden, G.A.; Boukhallouk, F.; Sausy, A.; Florin, L.; Muller, C.P. Tannins from Hamamelis virginiana bark extract: Characterization and improvement of the antiviral efficacy against influenza a virus and human papillomavirus. PLoS ONE 2014, 9, e88062. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.F.; Dai, Y.C.; Zhong, W.; Tan, M.; Lv, Z.P.; Zhou, Y.C.; Jiang, X. Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs. Bioorg. Med. Chem. 2012, 20, 1616–1623. [Google Scholar] [CrossRef]
- Karimi, A.; Moradi, M.T.; Saeedi, M.; Asgari, S.; Rafieian-Kopaei, M. Antiviral activity of Quercus persica L.: High efficacy and low toxicity. Adv. Biomed. Res. 2013, 2, 36. [Google Scholar] [PubMed]
- Szymańska, E.; Orłowski, P.; Winnicka, K.; Tomaszewska, E.; Bąska, P.; Celichowski, G.; Grobełny, J.; Basa, A.; Krzyżowska, M. Multifunctional tannic acid/silver nanoparticle-based mucoadhesive hydrogel for improved local treatment of HSV infection: In vitro and in vivo studies. Int. J. Mol. Sci. 2018, 19, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzyzowska, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Bien, K.; Orlowski, P.; Celichowski, G.; Grobelny, J. Tannic acid modification of metal nanoparticles: Possibility for new antiviral applications. Nanostructures Oral Med. 2017, 1, 335–363. [Google Scholar]
- Orłowski, P.; Kowalczyk, A.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Węgrzyn, A.; Grzesiak, J.; Celichowski, G.; Grobelny, J.; Eriksson, K.; Krzyzowska, M. Antiviral activity of tannic acid modified silver nanoparticles: Potential to activate immune response in herpes genitalis. Viruses 2018, 10, 524. [Google Scholar] [CrossRef] [Green Version]
- Nonaka, G.I.; Nishioka, I.; Nishizawa, M.; Yamagishi, T.; Kashiwada, Y.; Dutschman, G.E.; Bodner, A.J.; Kilkuskie, A.E.; Cheng, Y.C.; Lee, K.H. Anti-AIDS agents. 2. Inhibitory effects of tannins on HIV reverse transcriptase and HIV replication in H9 lymphocyte cells. J. Nat. Prod. 1999, 53, 587. [Google Scholar] [CrossRef]
- Xu, H.X.; Wan, M.; Pong, H.; Pui-Hay But, P.; Foo, L.Y. Inhibitory activity of flavonoids and tannins against HIV-1 protease. Biol. Pharm. Bull. 2000, 23, 1072–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nance, C.L.; Shearer, W.T. Is green tea good for HIV-1 infection? J. Allergy Clin. Immunol. 2003, 112, 851–853. [Google Scholar] [CrossRef]
- Uchiumi, F.; Hatano, T.; Ito, H.; Yoshida, T.; Tanuma, S.I. Transcriptional suppression of the HIV promoter by natural compounds. Antivir. Res. 2003, 58, 89–98. [Google Scholar] [CrossRef]
- Pronantyo, D.; Xu, L.Q.; Kang, E.T.; Chan-Park, M.B. Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings. Biomacromolecules 2018, 19, 2156–2165. [Google Scholar] [CrossRef] [PubMed]
- Sarni-Manchado, O.; Cheynier, V.; Moutounet, M. Interactions of grape seed tannins with salivary proteins. J. Agric. Food Chem. 1999, 47, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Frazier, R.A.; Deaville, E.R.; Green, R.J.; Stringano, E.; Willoughby, I. Interactions of tea tannins and condensed tannins with proteins. J. Pharm. Biomed. Anal. 2010, 51, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Jo¨bstl, E.; Howse, J.R.; Fairclough, J.P.; Williamson, M.P. Noncovalent crosslinking of casein by epigallocatechin gallate characterized by single molecule force microscopy. J. Agric. Food Chem. 2006, 54, 4077–4081. [Google Scholar] [CrossRef]
- Hull Vance, S.; Tucci, M.; Benghuzzi, H. Evaluation of the antimicrobial efficacy of green tea extract (egcg) against streptococcus pyogenes in vitro—Biomed 2011. Biomed. Sci. Instrum. 2011, 47, 177–182. [Google Scholar]
- Belhaoues, S.; Amri, S.; Bensouilah, M. Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts. S. Afr. J. Bot. 2020, 131, 200–205. [Google Scholar] [CrossRef]
- Suzilla, W.Y.; Izaati, A.; Isha, I.; Zalina, A.; Rajaletchumy, V.K. Formulation and evaluation of antimicrobial herbosomal gel from Quercus infectoria extract. Mater. Sci. Eng. C 2020, 736, 022030. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Negi, P.S. Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat. Prod. Res. 2018, 32, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Brazdaru, L.; Micutz, M.; Staicu, T.; Albu, M.; Sulea, D.; Leca, M. Structural and rheological properties of collagen hydrogels containing tannic acid and chlorhexidine digluconate intended for topical applications. Comptes Rendus Chim. 2015, 18, 160–169. [Google Scholar] [CrossRef]
- Albu, M.; Ghica, M.; Giurginca, M.; Trandafir, V.; Popa, L.; Cotrut, M. Spectral characteristics and antioxidant properties of tannic acid immobilized on collagen drug-delivery systems. Rev. De Chim. 2019, 60, 666–672. [Google Scholar]
- Ngobili, T.A.; Shah, H.; Park, J.P.; Kwist, K.W.; Inskeep, B.; Burg, K.J.L.; Booth, B.W. Remodeling of tannic acid crosslinked collagen type i induces apoptosis in er+ breast cancer cells. Anticancer Res. 2015, 35, 1285–1290. [Google Scholar] [PubMed]
- Bridgeman, C.J.; Nguyen, T.U.; Kishore, V. Anticancer efficacy of tannic acid is dependent on the stiffness of the underlying matrix. J. Biomater. Sci. Polym. Ed. 2018, 29, 412–427. [Google Scholar] [CrossRef]
- Wu, J.; Liao, W.; Zhang, J.; Chen, W. Thermal behavior of collagen crosslinked with tannic acid under microwave heating. J. Therm. Anal. Calorim. 2018, 135, 2329–2335. [Google Scholar] [CrossRef]
- Lee, J.; Yeo, M.; Kim, W.; Koo, Y.; Kim, G.H. Development of a tannic acid cross-linking process for obtaining 3D porous cell-laden collagen structure. Int. J. Biol. Macromol. 2018, 110, 497–503. [Google Scholar] [CrossRef]
- An, X.; Kang, Y.; Li, G. The interaction between chitosan and tannic acid calculated based on the density functional theory. Chem. Phys. 2019, 520, 100–107. [Google Scholar] [CrossRef]
- Rubentheren, V.; Ward, T.A.; Chee, C.Y.; Tang, C.K. Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohyd. Polym. 2015, 115, 379–387. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Nadolna, K.; Owczarek, A.; Michalska-Sionkowska, M.; Sionkowska, A. The characterization of thin films based on chitosan and tannic acid mixture for potential applications as wound dressings. Polym. Test. 2019, 78, 106007. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Milek, O.; Nadolna, K.; Owczarek, A.; Kleszczynski, K.; Osyczka, A.M. Normal and cancer cells response on the thin films based on chitosan and tannic acid. Toxicol. Vitr. 2020, 62, 104688. [Google Scholar] [CrossRef] [PubMed]
- Kumorek, M.; Minisy, I.M.; Krunclava, T.; Vorsilakova, M.; Venclikova, K.; Chanova, E.M.; Janouskova, O.; Kubies, D. pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid. Mater. Sci. Eng. C 2020, 109, 110493. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Choi, D.; Heo, J.; Jung, S.Y.; Hong, J. Studies on the drug loading and release profiles of degradable chitosan-based multilayer films for anticancer treatment. Cancers 2020, 5, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popa, M.; Constantin, C.B.; Ochiuz, L.; Desbrieres, J.; Peptu, C.A. Controlling the release kinetics of calcein loaded liposomes from chitosan/tannic acid and chitosan/poly(vinyl alcohol)/tannic acid hydrogels. Cellul. Chem. Technol. 2018, 52, 353–370. [Google Scholar]
- Ninan, N.; Forget, A.; Shastri, V.P.; Voelcker, N.H.; Blencowe, A. Controlling the release kinetics of calcein loaded liposomes from chitosan/tannic acid and chitosan/poly(vinyl alcohol)/tannic acid hydrogels. ACS Appl. Mater. Interfaces 2016, 8, 28511–28521. [Google Scholar] [CrossRef]
- Xu, L.; Pranantyo, D.; Neoh, K.G.; Kang, E.T. Tea stains-inspired antifouling coatings based on tannic acid-functionalized agarose. ACS Sustain. Chem. Eng. 2017, 5, 3055–3062. [Google Scholar] [CrossRef]
- Zhu, F. Interactions between starch and phenolic compound. Trends Food Sci. Technol. 2015, 43, 129–143. [Google Scholar] [CrossRef]
- Wei, X.; Li, J.; Li, B. Multiple steps and critical behaviors of the binding of tannic acid to wheat starch: Effect of the concentration of wheat starch and the mass ratio of tannic acid to wheat starch. Food Hydrocoll. 2019, 94, 174–182. [Google Scholar] [CrossRef]
- Lee, H.Y.; Hwang, C.H.; Kim, H.E.; Jeong, S.H. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr. Polym. 2018, 186, 290–298. [Google Scholar] [CrossRef]
- Grabska, S.; Sionkowska, A.; Kaczmarek, B. The physicochemical properties of 3D materials based on hyaluronic acid modified by tannic acid addition. Mol. Cryst. Liq. Cryst. 2019, 670, 90–96. [Google Scholar] [CrossRef]
- Gao, X.; Dai, Q.; Yao, L.; Dong, H.; Li, Q.; Cao, X. A medical adhesive used in a wet environment by blending tannic acid and silk fibroin. Biomater. Sci. 2020, 8, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Liang, S.; Yan, Y.; Tian, X.; Li, X. Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities. ACS Biomater. Sci. Eng. 2019, 5, 4601–4611. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Mei, Y.H.; Sathishkumat, G.; Lu, Z.S.; Li, C.M.; Wang, F.; Xia, Q.Y.; Xu, L.Q. Tannic acid-assisted deposition of silk sericin on the titanium surfaces for antifouling application. Colloid Interface Sci. Commun. 2020, 35, 100241. [Google Scholar] [CrossRef]
Virus Type | Type of Material/Composition | Reference |
---|---|---|
Influenza A virus | Hamamelis virginiana L. leaf extract | Theisen et al. 2014 [34] |
Papilloma virus | Hamamelis virginiana L. leaf extract | Theisen et al. 2014 [34] |
Noroviruses | Hydrolysable tannins | Zhang et al. 2012 [35] |
Herpes simplex virus type 1 | Quercus persica L. extract | Karimi et al. 2013 [36] |
Green tea extract | Nance et al. 2003 [42] | |
Herpes simplex virus type 1 and 2 | Silver nanoparticles modified by tannic acid in hydrogel form | Szymańska et al. 2018 [37] |
Human immunodeficiency virus (HIV) | Tannins testing | Nonaka et al. 1999 [40] |
Hydrolyzable tannins | Xu et al. 2000 [41] | |
Reaumuria hirtella and Quercus coccifera extract | Uchiumi et al. 2003 [43] |
Bacteria Type | Type of Material/Composition | Reference |
---|---|---|
Staphylococcus aureus | Tannic acid in polymeric matrix | Dabbaghi et al. 2019 [23] |
Anthemis praecox Link extract | Belhaoues et al. 2020 [49] | |
Quercus infectoria galls extract | Suzilla et al. 2020 [50] | |
Neolamarckia cadamba fruits extracts | Pandey et al. 2018 [51] | |
Escherichia coli | Tannic acid in polymeric matrix | Dabbaghi et al. 2019 [23] |
Neolamarckia cadamba fruits extracts | Pandey et al. 2018 [51] | |
Streptococcus pyogenes | green tea extract | Hull Vance et al. 2011 [48] |
Enterococcus faecalis | Anthemis praecox Link extract | Belhaoues et al. 2020 [49] |
Pseudomonas aeruginosa | Quercus infectoria galls extract | Suzilla et al. 2020 [50] |
Neolamarckia cadamba fruits extracts | Pandey et al. 2018 [51] | |
Yersinia enterocolitica | Neolamarckia cadamba fruits extracts | Pandey et al. 2018 [51] |
Listeria innocua | Neolamarckia cadamba fruits extracts | Pandey et al. 2018 [51] |
Bacillus cereus | Neolamarckia cadamba fruits extracts | Pandey et al. 2018 [51] |
Polymer Type | Properties | Applications | Reference |
---|---|---|---|
collagen | Pseudoplastic rheological behavior, high viscosity | Wound dressings, drug delivery | Brazdaru et al. 2015 [52] Albu et al. 2009 [53] |
Inhibition the melanoma cancer cells growth | Biomaterials with anticancer properties | Ngobili et al. 2015 [54] Bridgeman et al. 2018 [55] | |
High hydrothermal stability | Wound dressings | Wu et al. 2018 [56] | |
Improved scaffold mechanical properties and cellular preosteoblasts activity | Tissue regeneration | Lee et al. 2018 [57] An et al. 2019 [58] | |
chitosan | Improved mechanical properties, decreased degradation rate, improved cells viability | Wound dressings | Rubentheren et al. 2015 [59] Kaczmarek et al. 2019 [60] Kaczmarek et al. 2020 [61] |
Decrease of bacteria adhesion | Wound dressings, coatings | Kumorek et al. 2020 [62] | |
The medication of released rate by the amount of tannic acid | Drug delivery in anticancer treatment | Sun et al. 2020 [63] | |
Reduced swelling degree | Wound dressings | Popa et al. 2018 [64] | |
agarose | Improved mechanical properties, stimulated wound healing, high biocompatibility | Drug delivery, Wound dressings | Ninan et al. 2016 [65] |
Reduced adsorption of bovine serum albumin and the adhesion of Escherichia coli, high biocompatibility | Titanium, stainless steel, and silicon coating | Xu et al. 2017 [66] | |
Starch | Improved physicochemical properties | Wound dressings | Zhu, 2015 [67] Wei et al. 2019 [68] |
Hyaluronic acid | Enhanced physicochemical properties, inhibition of degradation by hyaluronidase, increase in cells adhesion to the surface and their proliferation, antioxidant properties | Wound dressings, tissue regeneration | Lee et al. 2018 [69] Grabska et al. 2019 [70] |
Silk | Improved wet-adhesive properties and stability, low cytotoxicity, antibacterial efficiency against S. aureus, Candida albicans, Cornebacterium and E. coli | Coatings, tissue regeneration | Gao et al. 2020 [71] Jing et al. 2019 [72] Cheng et al. 2020 [73] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarek, B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. Materials 2020, 13, 3224. https://doi.org/10.3390/ma13143224
Kaczmarek B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. Materials. 2020; 13(14):3224. https://doi.org/10.3390/ma13143224
Chicago/Turabian StyleKaczmarek, Beata. 2020. "Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview" Materials 13, no. 14: 3224. https://doi.org/10.3390/ma13143224