Investigation of Electrocatalysts Produced by a Novel Thermal Spray Deposition Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Electron Microscopy
2.3. X-ray Photoemission Spectroscopy
2.4. Electrochemical Measurements
3. Results
3.1. Sample “Au”
3.2. Sample “Au/Pt”
3.3. Sample “Ru/Ti-1”
3.4. Sample “Ru/Ti-3”
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. (Eds.) Handbook of Heterogeneous Catalysis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Hagen, J. Industrial Catalysis: A Practical Approach; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]
- Davodi, F.; Mühlhausen, E.; Tavakkoli, M.; Sainio, J.; Jiang, H.; Gökce, B.; Marzun, G.; Kallio, T. Catalyst Support Effect on the Activity and Durability of Magnetic Nanoparticles: Toward Design of Advanced Electrocatalyst for Full Water Splitting. ACS Appl. Mater. Interfaces 2018, 10, 31300–31311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandarenka, A.S.; Koper, M.T. Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts. J. Catal. 2013, 308, 11–24. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Oh, H.S.; Nong, H.N.; Reier, T.; Bergmann, A.; Gliech, M.; Ferreira de Araújo, J.; Willinger, E.; Schlögl, R.; Teschner, D.; Strasser, P. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2016, 138, 12552–12563. [Google Scholar] [CrossRef] [PubMed]
- Ertl, G.; Knozinger, H.; Weitkamp, J. (Eds.) Preparation of Solid Catalysts; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar]
- Liao, S.; Li, B.; Li, Y. Physical Characterization of Electrocatalysts. In PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications; Zhang, J., Ed.; Springer: London, UK, 2008; pp. 487–546. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Yan, D.; Wang, Y.; Chen, R.; Zou, Y.; Wang, S. Interfacial effects in supported catalysts for electrocatalysis. J. Mater. Chem. A 2019, 7, 23432–23450. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Li, Q.; Wang, H.; Zhang, L.; Wilkinson, D.P.; Zhang, J. Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochem. Energy Rev. 2019, 2, 518–538. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Fernández, P.; Rojas, S.; Ocón, P.; Gómez de la Fuente, J.L.; San Fabián, J.; Sanza, J.; Peña, F.J.; García-García, F.J.; Terreros, P.; Fierro, J.L.G. Influence of the Preparation Route of Bimetallic Pt-Au Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. J. Phys. Chem. C 2007, 111, 2913–2923. [Google Scholar] [CrossRef]
- Garsuch, A.; Michaud, X.; Wagner, G.; Klepel, O.; Dahn, J. Templated Ru/Se/C electrocatalysts for oxygen reduction. Electrochim. Acta 2009, 54, 1350–1354. [Google Scholar] [CrossRef]
- Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catal. 2012, 2, 1765–1772. [Google Scholar] [CrossRef]
- Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460. [Google Scholar] [CrossRef]
- Bian, W.; Yang, Z.; Strasser, P.; Yang, R. A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. J. Power Sources 2014, 250, 196–203. [Google Scholar] [CrossRef]
- Liu, C.W.; Wei, Y.C.; Wang, K.W. Preparation and surface characterization of Pt–Au/C cathode catalysts with ceria modification for oxygen reduction reaction. Electrochem. Commun. 2009, 11, 1362–1364. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C. Bimetallic Pt–Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys. 2011, 13, 4083–4094. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Liu, M.; Ma, C.; Di, L.; Dai, B.; Zhang, L. A Review on the Promising Plasma-Assisted Preparation of Electrocatalysts. Nanomaterials 2019, 9, 1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanjala, B.N.; Luo, J.; Rameshwori, L.; Fang, B.; Mott, D.; Njoki, P.N.; Engelhard, M.; Naslund, H.R.; Wu, J.K.; Wang, L.; et al. Nanoscale Alloying, Phase Segregation and Core-Shell Evolution of Gold-Platinum Nanoparticles and their Electrocatalytic Effect on Oxygen Reduction Reaction. Chem. Mater. 2010, 22, 4282–4294. [Google Scholar] [CrossRef]
- Yang, R.; Bonakdarpour, A.; Easton, E.B.; Stoffyn-Egli, P.; Dahn, J.R. Co–C–N Oxygen Reduction Catalysts Prepared by Combinatorial Magnetron Sputter Deposition. J. Electrochem. Soc. 2007, 154, A275. [Google Scholar] [CrossRef]
- Liang, H.; Ming, F.; Alshareef, H.N. Applications of Plasma in Energy Conversion and Storage Materials. Adv. Energy Mater. 2018, 8, 1801804. [Google Scholar] [CrossRef]
- Koh, S.; Leisch, J.; Toney, M.F.; Strasser, P. Structure-Activity-Stability Relationships of Pt-Co Alloy Electrocatalysts in Gas-Diffusion Electrode Layers. J. Phys. Chem. C 2007, 111, 3744–3752. [Google Scholar] [CrossRef]
- Shah, P.; Kevrekidis, Y.; Benziger, J. Ink-Jet Printing of Catalyst Patterns for Electroless Metal Deposition. Langmuir 1999, 15, 1584–1587. [Google Scholar] [CrossRef]
- Cook, B.S.; Fang, Y.; Kim, S.; Le, T.; Goodwin, W.B.; Sandhage, K.H.; Tentzeris, M.M. Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper. Electron. Mater. Lett. 2013, 9, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.A.; Garcia, M.F. (Eds.) Supported Metals in Catalysis; Catalytic Science Series; Imperial College Press: London, UK, 2012; Volume 11. [Google Scholar]
- Mette, K.; Bergmann, A.; Tessonnier, J.P.; Hävecker, M.; Yao, L.; Ressler, T.; Schlögl, R.; Strasser, P.; Behrens, M. Nanostructured Manganese Oxide Supported on Carbon Nanotubes for Electrocatalytic Water Splitting. ChemCatChem 2012, 4, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Gliech, M.; Bergmann, A.; Spöri, C.; Strasser, P. Synthesis–structure correlations of manganese–cobalt mixed metal oxide nanoparticles. J. Energy Chem. 2016, 25, 278–281. [Google Scholar] [CrossRef]
- Oezaslan, M.; Hasché, F.; Strasser, P. Pt-Based Core–Shell Catalyst Architectures for Oxygen Fuel Cell Electrodes. J. Phys. Chem. Lett. 2013, 4, 3273–3291. [Google Scholar] [CrossRef]
- Strasser, P.; Kühl, S. Dealloyed Pt-based core-shell oxygen reduction electrocatalysts. Nano Energy 2016, 29, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Herman, H.; Sampath, S.; McCune, R. Thermal Spray: Current Status and Future Trends. MRS Bull. 2000, 25, 17–25. [Google Scholar] [CrossRef]
- Kuroda, S.; Kawakita, J.; Watanabe, M.; Katanoda, H. Warm spraying—A novel coating process based on high-velocity impact of solid particles. Sci. Technol. Adv. Mater. 2008, 9, 033002. [Google Scholar] [CrossRef] [PubMed]
- Moridi, A.; Hassani-Gangaraj, S.M.; Guagliano, M.; Dao, M. Cold spray coating: Review of material systems and future perspectives. Surf. Eng. 2014, 30, 369–395. [Google Scholar] [CrossRef]
- Wang, C. Highly Electrically Conductive Surfaces for Electrochemical Applications. U.S. Patent US9765421B2, 19 September 2017. [Google Scholar]
- Klyushin, A.Y.; Rocha, T.C.R.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R. A near ambient pressure XPS study of Au oxidation. Phys. Chem. Chem. Phys. 2014, 16, 7881–7886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, J.; Toro-Gonzalez, M.; Molina-Higgins, M.; Castano, C. Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes. Mater. Sci. Eng. B 2016, 205, 28–35. [Google Scholar] [CrossRef]
- Okpalugo, T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 2005, 43, 153–161. [Google Scholar] [CrossRef]
- Grosvenor, A.; Kobe, B.; McIntyre, N. Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES™. Surf. Sci. 2004, 572, 217–227. [Google Scholar] [CrossRef]
- Klyushin, A.Y.; Arrigo, R.; Youngmi, Y.; Xie, Z.; Hävecker, M.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Bukhtiyarov, V.I.; Knop-Gericke, A.; Schlögl, R. Are Au Nanoparticles on Oxygen-Free Supports Catalytically Active? Top. Catal. 2016, 59, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Wang, Y.; Xia, W.; Muhler, M. Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study. J. Phys. Chem. C 2008, 112, 16869–16878. [Google Scholar] [CrossRef]
- Desimoni, E.; Casella, G.I.; Morone, A.; Salvi, A.M. XPS determination of oxygen-containing functional groups on carbon-fibre surfaces and the cleaning of these surfaces. Surf. Interface Anal. 1990, 15, 627–634. [Google Scholar] [CrossRef]
- Pirug, G.; Dziembaj, R.; Bonzel, H. Pt oxidation at 480 K under vacuum conditions. Surf. Sci. 1989, 221, 553–564. [Google Scholar] [CrossRef]
- Bancroft, G.M.; Adams, I.; Coatsworth, L.L.; Bennewitz, C.D.; Brown, J.D.; Westwood, W.D. ESCA study of sputtered platinum films. Anal. Chem. 1975, 47, 586–588. [Google Scholar] [CrossRef]
- Klyushin, A.Y.; Greiner, M.T.; Huang, X.; Lunkenbein, T.; Li, X.; Timpe, O.; Friedrich, M.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R. Is Nanostructuring Sufficient To Get Catalytically Active Au? ACS Catal. 2016, 6, 3372–3380. [Google Scholar] [CrossRef] [Green Version]
- Stefanov, P.; Shipochka, M.; Stefchev, P.; Raicheva, Z.; Lazarova, V.; Spassov, L. XPS characterization of TiO2 layers deposited on quartz plates. J. Phys. Conf. Ser. 2008, 100, 012039. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liao, M.; Imura, M.; Tanaka, A.; Iwai, H.; Koide, Y. Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric. Sci. Rep. 2014, 4, 6395. [Google Scholar] [CrossRef] [Green Version]
- Blume, R.; Hävecker, M.; Zafeiratos, S.; Teschner, D.; Kleimenov, E.; Knop-Gericke, A.; Schlögl, R.; Barinov, A.; Dudin, P.; Kiskinova, M. Catalytically active states of Ru(0001) catalyst in CO oxidation reaction. J. Catal. 2006, 239, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Kodintsev, I.M.; Trasatti, S.; Rubel, M.; Wieckowski, A.; Kaufher, N. X-ray photoelectron spectroscopy and electrochemical surface characterization of iridium(IV) oxide + ruthenium(IV) oxide electrodes. Langmuir 1992, 8, 283–290. [Google Scholar] [CrossRef]
- Williams, D.B.; Carter, B.C. Transmission Electron Microscopy—A Textbook for Materials Science; Springer: New York, NY, USA, 2009. [Google Scholar]
- Hui, R.; Wang, Z.; Kesler, O.; Rose, L.; Jankovic, J.; Yick, S.; Maric, R.; Ghosh, D. Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges. J. Power Sources 2007, 170, 308–323. [Google Scholar] [CrossRef]
- Aghasibeig, M.; Moreau, C.; Dolatabadi, A.; Wuthrich, R. Fabrication of nickel electrode coatings by combination of atmospheric and suspension plasma spray processes. Surf. Coat. Technol. 2016, 285, 68–76. [Google Scholar] [CrossRef]
- Volpi, E.; Olietti, A.; Stefanoni, M.; Trasatti, S.P. Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment. J. Electroanal. Chem. 2015, 736, 38–46. [Google Scholar] [CrossRef]
Sample Number | Sample Description | Support | Catalyst | Label in Text |
---|---|---|---|---|
25390 | SS + Au | Stainless steel | Au | Au |
25391 | Ti + Au + Pt | Ti | Au and Pt | Au/Pt |
25392 | SS + Ru + Ti 39-81-1 | Stainless steel and Ti | Ru | Ru/Ti-1 |
25393 | SS + Ru + Ti 39-81-3 | Stainless steel and Ti | Ru | Ru/Ti-3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hetaba, W.; Klyushin, A.Y.; Falling, L.J.; Shin, D.; Mechler, A.K.; Willinger, M.-G.; Schlögl, R. Investigation of Electrocatalysts Produced by a Novel Thermal Spray Deposition Method. Materials 2020, 13, 2746. https://doi.org/10.3390/ma13122746
Hetaba W, Klyushin AY, Falling LJ, Shin D, Mechler AK, Willinger M-G, Schlögl R. Investigation of Electrocatalysts Produced by a Novel Thermal Spray Deposition Method. Materials. 2020; 13(12):2746. https://doi.org/10.3390/ma13122746
Chicago/Turabian StyleHetaba, Walid, Alexander Yu. Klyushin, Lorenz J. Falling, Dongyoon Shin, Anna K. Mechler, Marc-Georg Willinger, and Robert Schlögl. 2020. "Investigation of Electrocatalysts Produced by a Novel Thermal Spray Deposition Method" Materials 13, no. 12: 2746. https://doi.org/10.3390/ma13122746
APA StyleHetaba, W., Klyushin, A. Y., Falling, L. J., Shin, D., Mechler, A. K., Willinger, M.-G., & Schlögl, R. (2020). Investigation of Electrocatalysts Produced by a Novel Thermal Spray Deposition Method. Materials, 13(12), 2746. https://doi.org/10.3390/ma13122746