Microstructure Evolution and Performance Improvement of Hypereutectic Al–Mg2Si Metallic Composite with Ca or Sb
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
- In comparison with single Ca or Sb modifiers, the optimum modification effect for the Al–Mg2Si alloy was obtained through the composite addition of (Ca + Sb), especially for the alloy with 0.15% Ca and 0.46% Sb (molar ratio of 1:1), which possessed an optimal microstructure configuration and mechanical properties;
- Through FESEM and XRD analyses, Ca5Sb3 compounds were observed in the center of the primary Mg2Si particles. Furthermore, the formation feasibility of Ca5Sb3 was also proven by thermodynamic calculation;
- According to DSC analysis, the precipitation of primary Mg2Si phases in Ca- or Sb-modified alloys was in the range of 675–683 °C, meaning that the precipitation behavior could be improved;
- Ca5Sb3 has a rather low mismatch degree with Mg2Si particles according to calculations using Phase Transformation Crystallography Lab software (PTCLab). The interatomic spacing misfit between and was rather low at 0.08%. Meanwhile, the corresponding interplanar spacing mismatches between / and / were merely 2.10% and 4.80%, respectively;
- Based on these findings, the efficient nucleation behavior of Ca5Sb3 for Mg2Si particles could be estimated, resulting in the improvement of the microstructure and mechanical properties of composite alloys.
Author Contributions
Funding
Conflicts of Interest
References
- Ram, S.; Chattopadhyay, K.; Chakrabarty, I. High temperature tensile properties of centrifugally cast in-situ Al-Mg2Si functionally graded composites for automotive cylinder block liners. J. Alloy. Compd. 2017, 724, 84–97. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Liu, X.; Yu, L.; Li, H.; Liu, Y. Investigation on AlP as the heterogeneous nucleus of Mg2Si in Al–Mg2Si alloys by experimental observation and first-principles calculation. Results Phys. 2018, 8, 146–152. [Google Scholar] [CrossRef]
- Wu, X.-F.; Wang, Y.; Wang, K.-Y.; Zhao, R.-D.; Wu, F. Enhanced mechanical properties of hypoeutectic Al-10Mg2Si cast alloys by Bi addition. J. Alloy. Compd. 2018, 767, 163–172. [Google Scholar] [CrossRef]
- Mabuchi, M.; Higashi, K. Strengthening mechanisms of Mg-Si alloys. Acta Mater. 1996, 44, 4611–4618. [Google Scholar] [CrossRef]
- Li, G.; Gill, H.S.; Varin, R.A. Magnesium silicide intermetallic alloys. Met. Mater. Trans. A 1993, 24, 2383–2391. [Google Scholar] [CrossRef]
- Zuo, M.; Zhao, D.; Wang, Z.; Geng, H. Complex modification of hypereutectic Al-Si alloy by a new Al-Y-P master alloy. Met. Mater. Int. 2015, 21, 646–651. [Google Scholar] [CrossRef]
- Ezatpour, H.R.; Chaichi, A.; Sajjadi, S.A. The effect of Al2O3-nanoparticles as the reinforcement additive on the hot deformation behavior of 7075 aluminum alloy. Mater. Des. 2015, 88, 1049–1056. [Google Scholar] [CrossRef]
- Tebib, M.; Samuel, A.; Ajersch, F.; Chen, X.-G. Effect of P and Sr additions on the microstructure of hypereutectic Al–15Si–14Mg–4Cu alloy. Mater. Charact. 2014, 89, 112–123. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Cha, J.-H.; Kim, S.-H.; Lim, C.-Y.; Kim, H.-W.; Kim, H.-S. Modification of eutectic Mg2Si in AlMg5Si2Mn alloy by pre-homogenization deformation treatment with different reduction conditions. Mater. Charact. 2018, 141, 388–397. [Google Scholar] [CrossRef]
- Wu, X.-F.; Wang, K.-Y.; Wu, F.; Zhao, R.-D.; Chen, M.-H.; Xiang, J.; Ma, S.-N.; Zhang, Y. Simultaneous grain refinement and eutectic Mg2Si modification in hypoeutectic Al-11Mg2Si alloys by Sc addition. J. Alloy. Compd. 2019, 791, 402–410. [Google Scholar] [CrossRef]
- Saffari, S.; Akhlaghi, F. Microstructure and mechanical properties of Al-Mg2Si composite fabricated in-situ by vibrating cooling slope. Trans. Nonferrous Met. Soc. China 2018, 28, 604–612. [Google Scholar] [CrossRef]
- Emamy, M.; Yeganeh, S.V.; Razaghian, A.; Tavighi, K. Microstructures and tensile properties of hot-extruded Al matrix composites containing different amounts of Mg2Si. Mater. Sci. Eng. A 2013, 586, 190–196. [Google Scholar] [CrossRef]
- Ghandvar, H.; Idris, M.H.; Ahmad, N. Effect of hot extrusion on microstructural evolution and tensile properties of Al-15%Mg2Si-xGd in-situ composites. J. Alloy. Compd. 2018, 751, 370–390. [Google Scholar] [CrossRef]
- Bai, G.; Liu, Z.; Lin, J.; Yu, Z.; Hu, Y.; Wen, C. Effects of the addition of lanthanum and ultrasonic stirring on the microstructure and mechanical properties of the in situ Mg 2 Si/Al composites. Mater. Des. 2016, 90, 424–432. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, Z.; Wang, Y.; Zhou, B. Hypereutectic aluminium alloy tubes with graded distribution of Mg2Si particles prepared by centrifugal casting. Mater. Des. 2000, 21, 149–153. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Liu, Y.; Yu, L.; Guo, Q.; Li, H. Effect of heat treatment on microstructure and mechanical property of Al–10%Mg2Si alloy. J. Alloy. Compd. 2016, 663, 16–19. [Google Scholar] [CrossRef]
- Emamy, M.; Emami, A.; Tavighi, K. The effect of Cu addition and solution heat treatment on the microstructure, hardness and tensile properties of Al–15%Mg2Si–0.15%Li composite. Mater. Sci. Eng. A 2013, 576, 36–44. [Google Scholar] [CrossRef]
- Emamy, M.; Khorshidi, R.; Raouf, A.H. The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite. Mater. Sci. Eng. A 2011, 528, 4337–4342. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, X.; Zhao, Y.; Wang, Z.; Wu, C.; Pan, D.; Meng, Z. Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al-Mg2Si in-situ composite. Mater. Sci. Eng. A 2018, 721, 263–273. [Google Scholar] [CrossRef]
- Azarbarmas, M.; Emamy, M.; Alipour, M. Study on fracture behaviour of Al–15%Mg2Si metal matrix composite with and without beryllium additions. J. Mater. Sci. 2011, 46, 6856–6862. [Google Scholar] [CrossRef]
- Ye, L.; Hu, J.; Tang, C.; Zhang, X.-M.; Deng, Y.; Liu, Z.; Zhou, Z. Modification of Mg2Si in Mg–Si alloys with gadolinium. Mater. Charact. 2013, 79, 1–6. [Google Scholar] [CrossRef]
- Wang, L.; Guo, E.; Ma, B. Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys. J. Rare Earths 2008, 26, 105–109. [Google Scholar] [CrossRef]
- Nodooshan, H.R.J.; Liu, W.; Wu, G.; Bahrami, A.; Pech-Canul, M.I.; Emamy, M. Mechanical and Tribological Characterization of Al-Mg2Si Composites After Yttrium Addition and Heat Treatment. J. Mater. Eng. Perform. 2014, 23, 1146–1156. [Google Scholar] [CrossRef]
- Farahany, S.; Ghandvar, H.; Nordin, N.A.; Ourdjini, A.; Idris, M.H.; Nordin, A. Effect of Primary and Eutectic Mg2Si Crystal Modifications on the Mechanical Properties and Sliding Wear Behaviour of an Al–20Mg2Si–2Cu–xBi Composite. J. Mater. Sci. Technol. 2016, 32, 1083–1097. [Google Scholar] [CrossRef]
- Alizadeh, R.; Mahmudi, R. Effects of Sb addition on the modification of Mg2Si particles and high-temperature mechanical properties of cast Mg–4Zn–2Si alloy. J. Alloy. Compd. 2011, 509, 9195–9199. [Google Scholar] [CrossRef]
- Lv, J.; Dong, H.; Fan, L.; Yu, W.; Li, L. Effects of Bi-Sb Addition and Solution Treatment on Microstructures and Mechanical Properties of Al-20 wt.% Mg2Si Composites. J. Mater. Eng. Perform. 2019, 28, 3105–3114. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, T.; Zha, M.; Li, C.; Li, J.; Wang, C.; Gao, C.; Wang, H.; Jiang, Q. Microstructure and wear behaviour of Al-20Mg2Si alloy with combined Zr and Sb additions. J. Alloy. Compd. 2018, 767, 1109–1116. [Google Scholar] [CrossRef]
- Yu, H.-C.; Wang, H.; Chen, L.; Liu, F.; Wang, C.; Jiang, Q. Heterogeneous nucleation of Mg2Si on CaSb2 nucleus in Al–Mg–Si alloys. CrystEngComm 2015, 17, 7048–7055. [Google Scholar] [CrossRef]
- Gu, X.-F.; Furuhara, T.; Zhang, W.-Z. PTCLab: Free and open-source software for calculating phase transformation crystallography. J. Appl. Crystallogr. 2016, 49, 1099–1106. [Google Scholar] [CrossRef]
- Yuan, G.; Liu, Z.; Wang, Q.; Ding, W. Microstructure refinement of Mg–Al–Zn–Si alloys. Mater. Lett. 2002, 56, 53–58. [Google Scholar] [CrossRef]
- Chen, K.; Li, Z. Effect of co-modification by Ba and Sb on the microstructure of Mg2Si/Mg–Zn–Si composite and mechanism. J. Alloy. Compd. 2014, 592, 196–201. [Google Scholar] [CrossRef]
- Yu, H.-C. Crystallization of primary Mg2Si in Al-20Mg2Si alloy with various molar ratios of Ca/Sb. J. Alloy. Compd. 2019, 787, 872–881. [Google Scholar] [CrossRef]
- Yu, H.-C.; Wang, H.-Y.; Chen, L.; Zha, M.; Wang, C.; Li, C.; Jiang, Q.-C. Spheroidization of primary Mg2Si in Al-20Mg2Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process. Mater. Sci. Eng. A 2017, 685, 31–38. [Google Scholar] [CrossRef]
- Niyazova, Z.U.; Vakhobov, A.V.; Dzhuraev, T.D. Phase diagram of the Ca–Sb system. Izv Akad. Nauk SSSR Neorg. Mater 1976, 72, 1293–1294. [Google Scholar]
- Okamoto, H. Ca–Sb (Calcium–Antimony). J. Phase Equilib. 1997, 18, 313. [Google Scholar] [CrossRef]
- Martinez-Ripoll, M.; Brauer, G. The crystal structure of Ca5Sb3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1974, 30, 1083–1087. [Google Scholar] [CrossRef]
- Leon-Escamilla, E.A.; Corbett, J.D. Hydrogen in polar intermetallics. Binary pnictides of divalent metals with Mn5Si3-type structures and their isotypic ternary hydride solutions. Chem. Mater 2006, 18, 4782–4792. [Google Scholar] [CrossRef]
- Qin, S.; Liu, S.; Zhang, C.; Xin, J.; Wang, Y.; Du, Y. Thermodynamic modeling of the Ca–In and Ca–Sb systems supported with first-principles calculations. Calphad 2015, 48, 35–42. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Kelly, P.; Easton, M.; Taylor, J. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model. Acta Mater. 2005, 53, 1427–1438. [Google Scholar] [CrossRef]
- Qiu, D.; Zhang, M.-X. The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg–10 wt.% Y Alloy. J. Alloy. Compd. 2014, 586, 39–44. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Isfahani, M.J.N.; Payami, F.; Asadabad, M.A.; Shokri, A.A. Investigation of the effect of boron carbide nanoparticles on the structural, electrical and mechanical properties of Al-B4C nanocomposites. J. Alloy. Compd. 2019, 797, 1348–1358. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, M.; Ren, B.; Xia, Z.; Ma, W.; Lv, Y.; Zhao, D. Microstructure Evolution and Performance Improvement of Hypereutectic Al–Mg2Si Metallic Composite with Ca or Sb. Materials 2020, 13, 2714. https://doi.org/10.3390/ma13122714
Zuo M, Ren B, Xia Z, Ma W, Lv Y, Zhao D. Microstructure Evolution and Performance Improvement of Hypereutectic Al–Mg2Si Metallic Composite with Ca or Sb. Materials. 2020; 13(12):2714. https://doi.org/10.3390/ma13122714
Chicago/Turabian StyleZuo, Min, Boda Ren, Zihan Xia, Wenwen Ma, Yidan Lv, and Degang Zhao. 2020. "Microstructure Evolution and Performance Improvement of Hypereutectic Al–Mg2Si Metallic Composite with Ca or Sb" Materials 13, no. 12: 2714. https://doi.org/10.3390/ma13122714
APA StyleZuo, M., Ren, B., Xia, Z., Ma, W., Lv, Y., & Zhao, D. (2020). Microstructure Evolution and Performance Improvement of Hypereutectic Al–Mg2Si Metallic Composite with Ca or Sb. Materials, 13(12), 2714. https://doi.org/10.3390/ma13122714