# Long-Term Stability of Ferroelectret Energy Harvesters

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Mathematical Model

#### 2.2. Harvester Fabrication

#### 2.3. Experimental Procedure

#### 2.3.1. Film Characterization

#### 2.3.2. Harvester Characterization

## 3. RESULTS

#### 3.1. Characterization of Cellular Polypropylene

#### 3.2. Harvester Characterization

#### 3.3. Model Validation

## 4. Discussion and Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Erturk, A.; Inman, D.J. Piezoeletric Energy Harvesting; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 392. [Google Scholar] [CrossRef]
- Thambi, N.; Sastry, A.M. Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy. Smart Mater. Struct.
**2008**, 17, 043001. [Google Scholar] [CrossRef][Green Version] - Beeby, S.P.; Tudor, M.J.; White, N.M. Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol.
**2006**, 17, R175. [Google Scholar] [CrossRef] - Caliò, R.; Rongala, U.B.; Camboni, D.; Milazzo, M.; Stefanini, C.; de Petris, G.; Oddo, M.C. Piezoelectric energy harvesting solutions. Sensors
**2014**, 14, 4755–4790. [Google Scholar] [CrossRef] [PubMed][Green Version] - Anton, S.R.; Farinholt, K.M.; Erturk, A. Piezoelectret foam-based vibration energy harvesting. J. Intell. Mater. Syst. Struct.
**2014**, 25, 1681–1692. [Google Scholar] [CrossRef] - Pondrom, P.; Hillenbrand, J.; Sessler, G.M.; Bös, J.; Melz, T. Energy Harvesting with Single-layer and Stacked Piezoelectret Films. IEEE Trans. Dielectr. Electr. Insul.
**2015**, 22, 1470–1476. [Google Scholar] [CrossRef] - Bauer, S.; Gerhard-Multhaupt, R.; Sessler, G.M. Ferroelectrets: Soft Electroactive. Phys. Today
**2004**, 57, 37–43. [Google Scholar] [CrossRef] - Tajitsu, Y. Piezoelectret Sensor Made From an Electro-spun Fluoropolymer and Its Use in a Wristband for Detecting Heart-beat Signals. IEEE Trans. Dielectr. Electr. Insul.
**2015**, 22, 1355–1359. [Google Scholar] [CrossRef] - Niu, P.; Chapman, P.; Riemer, R.; Zhang, X. Evaluation of motions and actuation methods for biomechanical energy harvesting. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Aachen, Germany, 20–25 June 2004; Volume 3, pp. 2100–2106. [Google Scholar] [CrossRef]
- Nie, J.; Ji, M.; Chu, Y.; Meng, X.; Wang, Y.; Zhong, J. Nano Energy Human pulses reveal health conditions by a piezoelectret sensor via the approximate entropy analysis. Nano Energy
**2019**, 58, 528–535. [Google Scholar] [CrossRef] - Paajanen, M.; Lekkala, J.; Kirjavainen, K. ElectroMechanical Film (EMFi)—A new multipurpose electret material. Sens. Actuators
**2000**, 84, 95–102. [Google Scholar] [CrossRef] - Mellinger, A.; Wegener, M.; Wirges, W.; Mallepally, R.R.; Gerhard-Multhaupt, R. Thermal and Temporal Stability of Ferroelectret Films Made from Cellular Polypropylene/Air Composites; Taylor & Francis: Abingdon, UK, 2006; pp. 189–199. [Google Scholar] [CrossRef]
- Wan, Y.; Xie, L.; Zhang, X.; Zhong, Z. Time dependence of piezoelectric polypropylene film coefficient of cellular ferroelectret. Appl. Phys. Lett.
**2016**, 98, 122902. [Google Scholar] [CrossRef] - Qu, S.; Yu, Y. Electromechanical coupling properties and stability analysis of ferroelectrets. J. Appl. Phys.
**2011**, 110. [Google Scholar] [CrossRef] - Ray, C.A.; Anton, S.R. Multilayer piezoelectret foam stack for vibration energy harvesting. J. Intell. Mater. Syst. Struct.
**2017**, 28, 408–420. [Google Scholar] [CrossRef] - Sessler, G.M. Stacked and folded piezoelectrets for vibration-based energy harvesting. Phase Transit.
**2016**, 89, 667–677. [Google Scholar] [CrossRef] - Luo, Z.; Zhu, D.; Beeby, S.P. Multilayer ferroelectret-based energy harvesting insole. J. Phys. Conf. Ser.
**2015**, 660, 1–6. [Google Scholar] [CrossRef][Green Version] - Luo, Z.; Zhu, D.; Beeby, S. An electromechanical model of ferroelectret for energy harvesting. Smart Mater. Struct.
**2016**, 25. [Google Scholar] [CrossRef][Green Version] - Pondrom, P.; Hillenbrand, J.; Sessler, G.M.; Bös, J.; Melz, T. Vibration-based energy harvesting with stacked piezoelectrets. Appl. Phys. Lett.
**2014**, 104, 172901. [Google Scholar] [CrossRef] - Fialka, J.; Beneš, P. Comparison of Methods of Piezoelectric Coefficient Measurement. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012. [Google Scholar]
- Polytec. MSV-400 Microscope Scanning Vibrometer. 2019. Available online: http://www.vibrometry.co.kr/MSV-300.pdf (accessed on 9 December 2019).
- Research, V. VibrationVIEW Manual; Vibration Research Corporation: Jenison, MI, USA, 2019. [Google Scholar]
- Ewins, D.J. Modal Testing: Theory, Practice, and Application; Research Studies Press: Boston, MA, USA, 2000. [Google Scholar]
- Kong, N.; Ha, D.S.; Erturk, A.; Inman, D.J. Resistive Impedance Matching Circuit for Piezoelectric Energy Harvesting. J. Intell. Mater. Syst. Struct.
**2010**, 21, 1293–1302. [Google Scholar] [CrossRef]

**Figure 4.**(

**a**) The experimental setup for PP energy harvesters. (

**b**) A close view of the harvester and shaker.

**Figure 5.**(

**a**) Measured displacement amplitude as a function of applied voltage. (

**b**) Piezoelectric charge constant ${d}_{33}$ of the PP films under constant-stress and stress-free loading conditions.

**Figure 7.**The open-circuit voltage of the 250 g PP harvesters under base acceleration amplitudes of (

**a**) 1 g and (

**b**) 1.8 g with a frequency of 10 Hz.

**Figure 8.**Output power of three PP harvesters constituted out of a 250 g seismic mass and CS, SC, and SF films under base acceleration amplitude and frequency of 1 g and 220 Hz as functions of the load resistance ${R}_{L}$.

**Figure 9.**The frequency-response curves of the output power for the (

**a**) 25 g and (

**b**) 250 g PP harvesters employing CS, SC, and SF films under a base acceleration amplitude of 1 g.

**Figure 10.**The experimental and analytical frequency-response curves of PP harvesters constituted out of (

**a**) 25 g and (

**b**) 250 g seismic masses and a SF film under a base acceleration with amplitude of 1 g.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kayaharman, M.; Das, T.; Seviora, G.; Saritas, R.; Abdel-Rahman, E.; Yavuz, M. Long-Term Stability of Ferroelectret Energy Harvesters. *Materials* **2020**, *13*, 42.
https://doi.org/10.3390/ma13010042

**AMA Style**

Kayaharman M, Das T, Seviora G, Saritas R, Abdel-Rahman E, Yavuz M. Long-Term Stability of Ferroelectret Energy Harvesters. *Materials*. 2020; 13(1):42.
https://doi.org/10.3390/ma13010042

**Chicago/Turabian Style**

Kayaharman, Muhammed, Taylan Das, Gregory Seviora, Resul Saritas, Eihab Abdel-Rahman, and Mustafa Yavuz. 2020. "Long-Term Stability of Ferroelectret Energy Harvesters" *Materials* 13, no. 1: 42.
https://doi.org/10.3390/ma13010042