Effects of the γ″-Ni3Nb Phase on Mechanical Properties of Inconel 718 Superalloys with Different Heat Treatments
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Materials Preparation
2.2. Methodology of Metallographic Investigation
2.3. Tensile Experiments
3. Results
3.1. Microstructural Characterization
3.2. Lattice Misfit
3.3. Mechanical Properties
4. Discussions
5. Conclusions
- The relatively coarser γ″ precipitates formed in the grain boundaries were only observed in the superalloy treated with HIP + DA. Moreover, Inconel 718 superalloys with heat treatments exhibited many fine γ″ precipitates of ~26.49 ± 1.82 nm in mean size.
- The yield strengths of the HIP + DA Inconel 718 superalloy at room temperature and at 650 °C both possessed the maximum values which were 993 ± 5.7 and 811 ± 12.6 MPa, respectively, compared to the SHT and HIP + STA samples. In addition, the ultimate tensile strength and elongation values of the HIP + DA Inconel 718 superalloy were better than those of the alloys treated with SHT and HIP + STA.
- The dominant strengthening phase was the γ″ precipitate in the Inconel 718 superalloy, because the lattice misfits (ε) of γ/γ″ in all conditions possessed higher values than that of γ/γ′.
- The strengthening mechanisms of the Inconel 718 superalloy after SHT and HIP + STA treatments can be explained by the coherency strain strengthening mechanism due to the formation of fine γ″ precipitates. However, a combination of coherency strain strengthening and a dislocation-cut ordered particle strengthening mechanism is considered to be the reason for the strengthening of the Inconel 718 superalloy treated with HIP + DA.
Author Contributions
Funding
Conflicts of Interest
References
- Baccinoa, R.; Moreta, F.; Pellerinb, F.; Guichardc, D.; Raisso, G. High performance and high complexity net shape parts for gas turbines: The ISOPREC powder metallurgy process. Mater. Des. 2000, 21, 345–350. [Google Scholar] [CrossRef]
- Özgün, Ö.; Gülsoy, H.Ö.; Yılmaz, R.; Fındık, F. Microstructural and mechanical characterization of injection molded 718 superalloy powders. J. Alloys Compd. 2013, 576, 140–153. [Google Scholar] [CrossRef]
- Rao, G.A.; Kumar, M.; Srinivas, M.; Sarma, D.S. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718. Mater. Sci. Eng. A 2003, 355, 114–125. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Yu, J.; Ju, J.; Zhang, Z.; Kang, M.; Wang, J.; Sun, B.; Ning, Y. Temperature-dependent deformation mechanisms and microstructural degradation of a polycrystalline nickel-based superalloy. J. Alloys Compd. 2019, 775, 181–192. [Google Scholar] [CrossRef]
- He, Z.; Zhang, Y.; Qiu, W.; Shi, H.J.; Gu, J. Temperature effect on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy. Mater. Sci. Eng. A 2016, 676, 246–252. [Google Scholar] [CrossRef]
- Anderson, M.; Thielin, A.L.; Bridier, F.; Bocher, P.; Savoie, J. δ Phase precipitation in Inconel 718 and associated mechanical properties. Mater. Sci. Eng. A 2017, 679, 48–55. [Google Scholar] [CrossRef]
- Chang, L.; Sun, W.; Cui, Y.; Zhang, F.; Yang, R. Effect of heat treatment on microstructure and mechanical properties of the hot-isostatic-pressed Inconel 718 powder compact. J. Alloys Compd. 2014, 590, 227–232. [Google Scholar] [CrossRef]
- Chamanfar, A.; Sarrat, L.; Jahazi, M.; Asadi, M.; Weck, A.; Koul, A.K. Microstructural characteristics of forged and heat treated Inconel-718 disks. Mater. Des. 2013, 52, 791–800. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. J. Propul. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Kang, M.; Gao, H.; Wang, J.; Ling, L.; Sun, B. Prediction of Microporosity in Complex Thin-Wall Castings with the Dimensionless Niyama Criterion. Materials 2013, 6, 1789–1802. [Google Scholar] [CrossRef] [Green Version]
- Goel, S.; Sittiho, A.; Charit, I.; Klement, U.; Joshi, S. Effect of post-treatments under hot isostatic pressure on microstructural characteristics of EBM-built Alloy 718. Addit. Manuf. 2019, 28, 727–737. [Google Scholar] [CrossRef]
- Chang, S.H.; Lee, S.C.; Tang, T.P.; Ho, H.H. Evaluation of HIP pressure on Inconel 718 superalloy. Int. J. Cast Met. Res. 2006, 19, 181–187. [Google Scholar] [CrossRef]
- Chang, S.H.; Lee, S.C.; Huang, K.T.; Liang, C. Effects of Solid-Solution Treatment on Microstructure and Mechanical Properties of HIP Treated Alloy 718. Appl. Mech. Mater. 2012, 117, 1315–1318. [Google Scholar] [CrossRef]
- Chang, S.H.; Lee, S.C.; Tang, T.P.; Ho, H.H. Effects of temperature of HIP process on characteristics of Inconel 718 superalloy. Cast Met. 2013, 19, 175–180. [Google Scholar] [CrossRef]
- Chang, S.H. In situ TEM observation of γ′, γ″ and δ precipitations on Inconel 718 superalloy through HIP treatment. J. Alloys Compd. 2009, 486, 716–721. [Google Scholar] [CrossRef]
- Rezaie, A.; Vahdat, S.E. Study of Effects of Temperature and Pressure in HIP Process on Mechanical Properties of Nickel-based Superalloys. Mater. Today Proc. 2017, 4, 152–156. [Google Scholar] [CrossRef]
- Qiu, C.L.; Attallah, M.M.; Wu, X.H.; Andrews, P. Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder. Mater. Sci. Eng. A 2013, 564, 176–185. [Google Scholar] [CrossRef]
- Chang, S.H.; Lee, S.; Tang, T.P.; Ho, H.H. Influences of Soaking Time in Hot Isostatic Pressing on Strength of Inconel 718 Superalloy. Mater. Trans. 2006, 47, 426–432. [Google Scholar] [CrossRef]
- Kim, M.T.; Chang, S.Y.; Won, J.B. Effect of HIP process on the micro-structural evolution of a nickel-based superalloy. Mater. Sci. Eng. A 2006, 441, 126–134. [Google Scholar] [CrossRef]
- Rao, G.A.; Srinivas, M.; Sarma, D.S. Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718. Mater. Sci. Eng. A 2006, 418, 282–291. [Google Scholar] [CrossRef]
- Popovich, A.A.; Sufiiarov, V.S.; Polozov, I.A.; Borisov, E.V. Microstructure and Mechanical Properties of Inconel 718 Produced by SLM and Subsequent Heat Treatment. Key Eng. Mater. 2015, 651, 665–670. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Kang, M.; Wang, M.; Li, M.; Gao, H.; Wang, J.; Sun, B.; Ning, Y. Fracture mechanisms induced by microporosity and precipitates in isothermal fatigue of polycrystalline nickel based superalloy. Mater. Sci. Eng. A 2018, 736, 438–452. [Google Scholar] [CrossRef]
- Monajati, H.; Jahazi, M.; Bahrami, R.; Yue, S. The influence of heat treatment conditions on γ′ characteristics in Udimet® 720. Mater. Sci. Eng. A 2004, 373, 286–293. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, X.; Mei, J.; Andrews, P.; Voice, W. Influence of heat treatment on microstructure and tensile behavior of a hot isostatically pressed nickel-based superalloy. J. Alloys Compd. 2013, 578, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Kang, M.; Wu, Y.; Wang, M.; Li, M.; Yu, J.; Gao, H.; Wang, J. Crack formation and microstructure-sensitive propagation in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments. Int. J. Fatigue 2018, 108, 79–89. [Google Scholar] [CrossRef]
- Qin, H.; Bi, Z.; Yu, H.; Feng, G.; Du, J.; Zhang, J. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging. J. Alloys Compd. 2018, 740, 997–1006. [Google Scholar] [CrossRef]
- Popovicha, V.A.; Borisovb, E.V.; Popovichb, A.A.; Sufiiarovb, V.S.H.; Masaylob, D.V.; Alzina, L. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater. Des. 2017, 131, 12–22. [Google Scholar] [CrossRef]
- Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S. Some aspects of the precipitation of metastable intermetallic phases in INCONEL 718. Metall. Trans. A 1992, 23, 2015–2028. [Google Scholar] [CrossRef]
- Pope, C.G. X-ray Diffraction and the Bragg Equation. J. Chem. Educ. 1997, 74, 129–131. [Google Scholar] [CrossRef]
- Nickel Alloy, Corrosion and Heat Resistant, Sheet, Strip, Foil, and Plate 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe Consumable Electrode or Vacuum Induction Melted, 1775 °F (968 °C) Solution Heat Treated; AMS5596; SAE International: Warrendale, PA, USA, 1964.
- Nickel Alloy, Corrosion and Heat Resistant, Bars, Forgings, and Rings 52.5Ni 19Cr 3.0Mo 5.1Cb 0.90Ti 0.50Al 18Fe, Consumable Electrode or Vacuum Induction Melted 1775 °F (968 °C) Solution Heat Treated, Precipitation Hardenable; AMS5662G; SAE International: Warrendale, PA, USA, 1993.
- Nembach, E.; Neite, G. Precipitation hardening of superalloys by ordered γ′-particles. Prog. Mater Sci. 1985, 29, 177–319. [Google Scholar] [CrossRef]
- Raynor, D.; Silcock, J.M. Strengthening Mechanisms in γ′ Precipitating Alloys. Met. Sci. J. 1970, 4, 121–130. [Google Scholar] [CrossRef]
- Oblak, J.M.; Paulonis, D.F.; Duvall, D.S. Coherency strengthening in Ni base alloys hardened by DO 22 γ′ precipitates. Metall. Trans. 1974, 5, 143–153. [Google Scholar]
- Chaturvedi, M.C.; Han, Y.F. Strengthening mechanisms in Inconel 718. Metal Sci. 1983, 17, 145–149. [Google Scholar] [CrossRef]
- Gleiter, H.; Hornbogen, E. Theorie der Wechselwirkung von Versetzungen mit kohärenten geordneten Zonen (I). Phys. Status Solidi 2010, 12, 235–250. [Google Scholar] [CrossRef]
- Gleiter, H.; Hornbogen, E. Precipitation hardening by coherent particles. Mater. Sci. Eng. 1968, 2, 285–302. [Google Scholar] [CrossRef]
Spot | Phase Designation | Ni | Fe | Cr | Nb | Ti | C | Mo | Al |
---|---|---|---|---|---|---|---|---|---|
1 | Matrix | 52.48 | 18.99 | 19.68 | 2.47 | 0.86 | 2.61 | 2.46 | 0.35 |
2 | Laves | 37.39 | 11.25 | 12.11 | 29.71 | 1.07 | – | 8.09 | 0.35 |
3 | δ | 54.08 | 12.31 | 13.90 | 13.51 | 2.10 | – | 3.72 | 0.38 |
4 | MC-carbide | 2.61 | 1.12 | 0.88 | 66.81 | 7.51 | 13.69 | 7.31 | 0.38 |
5 | γ″ | 53.21 | 11.28 | 12.80 | 13.61 | 2.12 | – | 6.62 | 0.36 |
Treatments | Lattice Parameter (nm) | Lattice Misfit ε (%) | |||
---|---|---|---|---|---|
γ Phase | γ′ Phase | γ″ Phase | γ/γ′ | γ/γ″ | |
SHT | a = 0.3601 | a = 0.3607 | a = 0.3620 c = 0.7408 | 0.1847 | 0.5407 |
HIP + STA | a = 0.3601 | a = 0.3608 | a = 0.3619 c = 0.7338 | 0.1869 | 0.4985 |
HIP + DA | a = 0.3603 | a = 0.3610 | a = 0.3626 c = 0.7492 | 0.1928 | 0.6320 |
Treatment | YS (MPa) | UTS (MPa) | EL (%) | YS(MPa) | UTS (MPa) | EL (%) |
---|---|---|---|---|---|---|
Room Temperature | 650 °C | |||||
SHT | 814 ± 5.6 | 952 ± 8.7 | 8.9 ± 0.4 | 666 ± 7.7 | 703 ± 29.1 | 7.1 ± 0.2 |
HIP + STA | 972 ± 8.7 | 1030 ± 4.7 | 10.1 ± 1.0 | 788 ± 12.6 | 820 ± 20 | 8.9 ± 0.4 |
HIP + DA | 993 ± 5.7 | 1070 ± 11.6 | 11.7 ± 2.0 | 811 ± 12.6 | 854 ± 10.0 | 12.7 ± 1.1 |
Wrought material | 1035–1067 | 1275–1400 | 12–21 | 860–1000 | 1000–1200 | 12–19 |
Treatments | Strengthening Method | SHT | HIP + STA | HIP + DA |
---|---|---|---|---|
(MPa) | coherent strain strengthening | 232.83 | 337.04 | 316.43 |
(MPa) | dislocation-cut ordered particle strengthening | – | – | 43.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, L.-S.-B.; Yin, Z.; Hu, Z.; Liang, J.-H.; Wang, Z.-Y.; Wang, J.; Sun, B.-D. Effects of the γ″-Ni3Nb Phase on Mechanical Properties of Inconel 718 Superalloys with Different Heat Treatments. Materials 2020, 13, 151. https://doi.org/10.3390/ma13010151
Ling L-S-B, Yin Z, Hu Z, Liang J-H, Wang Z-Y, Wang J, Sun B-D. Effects of the γ″-Ni3Nb Phase on Mechanical Properties of Inconel 718 Superalloys with Different Heat Treatments. Materials. 2020; 13(1):151. https://doi.org/10.3390/ma13010151
Chicago/Turabian StyleLing, Li-Shi-Bao, Zheng Yin, Zhi Hu, Jin-Hui Liang, Zhi-Yong Wang, Jun Wang, and Bao-De Sun. 2020. "Effects of the γ″-Ni3Nb Phase on Mechanical Properties of Inconel 718 Superalloys with Different Heat Treatments" Materials 13, no. 1: 151. https://doi.org/10.3390/ma13010151
APA StyleLing, L.-S.-B., Yin, Z., Hu, Z., Liang, J.-H., Wang, Z.-Y., Wang, J., & Sun, B.-D. (2020). Effects of the γ″-Ni3Nb Phase on Mechanical Properties of Inconel 718 Superalloys with Different Heat Treatments. Materials, 13(1), 151. https://doi.org/10.3390/ma13010151