Exterior and Internal Uniform Loading of Pt Nanoparticles on Yolk-Shell La2O3 by Acoustic Levitation Synthesis with Enhanced Photocatalytic Performance
Abstract
1. Introduction
2. Experimental
2.1. Synthesis
2.2. Materials Characterization
2.3. Photocatalytic Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qin, M.; Lin, K.; Shuai, Q.; Liang, H.; Peng, J.; Mao, C.; Ji, Y.; Wu, H. Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye. J. Mater. Sci. Mater. Electron. 2018, 29, 9740–9744. [Google Scholar] [CrossRef]
- Bao, Y.; Qin, M.; Yu, Y.; Zhang, L.; Wu, H. Facile fabrication of porous NiCo2O4 nanosheets with high adsorption performance toward Congo red. J. Phys. Chem. Solids 2019, 124, 289–295. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, M.; Yu, Y.; Zhang, M.; Zhao, X.; Qian, J.; Wu, H. Preparation of ternary Pt-NiO-ZnO hybrids and investigation of its photocatalytic performance toward methyl orange. J. Mater. Sci. Mater. Electron. 2019, 30, 5158–5169. [Google Scholar] [CrossRef]
- Park, H.; Kim, H.; Moonb, G.; Choi, W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 2016, 9, 411–433. [Google Scholar] [CrossRef]
- Pan, L.; Muhammad, T.; Ma, L.; Huang, Z.; Wang, S.; Wang, L.; Zou, J.; Zhang, X. MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B 2016, 189, 181–191. [Google Scholar] [CrossRef]
- Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 2017, 10, 402–434. [Google Scholar] [CrossRef]
- Yu, C.; Yang, K.; Xie, Y.; Fan, Q.; Yu, J.C.; Shu, Q.; Wang, C. Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 2013, 5, 2142–2151. [Google Scholar] [CrossRef]
- Di Mauro, A.; Zimbone, M.; Scuderi, M.; Nicotra, G.; Fragalà, M.E.; Impellizzeri, G. Effect of Pt Nanoparticles on the Photocatalytic Activity of ZnO Nanofibers. Nanoscale Res. Lett. 2015, 10, 484. [Google Scholar] [CrossRef]
- Jaramillo-Páez, C.A.; Navío, J.A.; Hidalgo, M.C.; Macías, M. ZnO and Pt-ZnO photocatalysts: Characterization and photocatalytic activity assessing by means of three substrates. Catal. Today 2018, 313, 12–19. [Google Scholar] [CrossRef]
- Lakshmanareddy, N.; Rao, V.N.; Cheralathan, K.K.; Subramaniam, E.P.; Shankar, M.V. Pt/TiO2 nanotube photocatalyst-Effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation. J. Colloid Interface Sci. 2019, 538, 83–98. [Google Scholar] [CrossRef]
- Zhao, J.; Li, W.; Fan, L.; Quan, Q.; Wang, J.; Xiao, C. Yolk-porous shell nanospheres from siliver-decorated titanium dioxide and silicon dioxide as an enhanced visible-light photocatalyst with guaranteed shielding for organic carrier. J. Colloid Interface Sci. 2019, 534, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, C.; Zhang, C.; Zhao, M.; Zhang, J.; Chen, H.; Zha, Z.; Zhao, T.; Qian, H. Controlled synthesis of upconverting nanoparticles/ZnxCd1−xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light. Appl. Catal. B 2018, 224, 854–862. [Google Scholar] [CrossRef]
- Li, Z.; Li, M.; Bian, Z.; Kathiraser, Y.; Kawi, S. Design of highly stable and selective core/yolk-shell nanocatalysts—A review. Appl. Catal. B 2016, 188, 324–341. [Google Scholar] [CrossRef]
- Jin, J.; Wang, C.; Ren, X.; Huang, S.; Wu, M.; Chen, L.; Hasan, T.; Wang, B.; Li, Y.; Su, B. Anchoring ultrafine metallic and oxidized Pt nanoclusters on yolk-shell TiO2 for unprecedentedly high photocatalytic hydrogen production. Nano Energy 2017, 38, 118–126. [Google Scholar] [CrossRef]
- Lv, J.; Kong, C.; Liu, K.; Yin, L.; Ma, B.; Zhang, X.; Yang, S. Surfactant-free synthesis of Cu2O yolk-shell cubes decorated with Pt nanoparticles for enhanced H2O2 detection. Chem. Commun. 2018, 54, 8458–8461. [Google Scholar] [CrossRef]
- Liu, L.; Wei, Q.; Yu, X.; Zhang, Y. Metal-Organic Framework-Derived Co3O4/Au Heterostructure as a Catalyst for Efficient Oxygen Reduction. ACS Appl. Mater. Interfaces 2018, 10, 34068–34076. [Google Scholar] [CrossRef]
- Li, G.; Tang, Z. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011. [Google Scholar] [CrossRef]
- Lee, I.; Joo, J.B.; Yin, Y.; Zaera, F. A Yolk@Shell Nanoarchitecture for Au/TiO2 Catalysts. Angew. Chem. Int. Ed. 2011, 50, 10208–10211. [Google Scholar] [CrossRef]
- Park, J.C.; Song, H. Metal@Silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33–49. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Han, D.; Gu, F. CO oxidation on Au@CeO2 yolk-shell nanoparticles with high catalytic stability. Mater. Lett. 2014, 137, 188–191. [Google Scholar] [CrossRef]
- Shim, J.; Hong, Y.J.; Na, H.; Jang, W.; Kang, Y.C.; Roh, H. Highly Active and Stable Pt-Loaded Ce0.75Zr0.25O2 Yolk-Shell Catalyst for Water-Gas Shift Reaction. ACS Appl. Mater. Interfaces 2016, 8, 17239–17244. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Hong, Y.J.; Kang, Y.C.; Lee, J. High performance chemiresistive H2S sensors using Ag-loaded SnO2 yolk-shell nanostructures. RSC Adv. 2014, 4, 16067–16074. [Google Scholar] [CrossRef]
- Hong, Y.J.; Yoon, J.; Lee, J.; Kang, Y.C. One-Pot Synthesis of Pd-Loaded SnO2 Yolk-Shell Nanostructures for Ultraselective Methyl Benzene Sensors. Chem. Eur. J. 2014, 20, 2737–2741. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Yu, Y.; Lin, K.; Liu, P.; Zheng, C.; Wang, L.; Xu, T.; Wang, Z.; Wu, H. Easy hydrothermal synthesis of multi-shelled La2O3 hollow spheres for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 2018, 29, 1232–1237. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Liu, J.L.; Qin, M.; Kou, K.C.; Wu, G.L.; Wu, H.J. Effective Cocatalyst Pt/PtO Nanodots on La2O3 Microspheres for Degradation of Methyl Orange. J. Nanosci. Nanotechnol. 2020, 20, 3140–3147. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Qu, S.; Zang, D.; Wang, L.; Wu, H. Fast Synthesis of Pt Nanocrystals and Pt/Microporous La2O3 Materials Using Acoustic Levitation. Nanoscale Res. Lett. 2018, 13, 50. [Google Scholar] [CrossRef]
- Cao, A.; Lu, R.; Veser, G. Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys. 2010, 12, 13499–13510. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.Q.; Kleitz, F.; Chen, Z.G.; Yang, T.; Strounina, E.; Lu, G.Q.M.; Qiao, S.Z. Yolk-Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. Adv. Funct. Mater. 2012, 22, 591–599. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Q.; Yao, L.; Sun, K.; Wei, M.; Guo, E. Preparation and characterization of ultrathin Pt/CeO2/Bi2WO6 nanobelts with enhanced photoelectrochemical properties. Dyes Pigment. 2018, 149, 612–619. [Google Scholar] [CrossRef]
- Huang, H.; Leung, D.Y.C.; Ye, D. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. J. Mater. Chem. 2011, 21, 9647–9652. [Google Scholar] [CrossRef]
- Xing, J.; Jiang, H.B.; Chen, J.F.; Li, Y.H.; Wu, L.; Yang, S.; Zheng, L.R.; Wang, H.F.; Hu, P.; Zhao, H.J.; et al. Active sites on hydrogen evolution photocatalyst. J. Mater. Chem. A 2013, 1, 15258–15264. [Google Scholar] [CrossRef]
Samples | Pt with Zero Valence State (%) | Pt with Oxidation State (%) |
---|---|---|
S1 | 28.37 | 71.63 |
S2 | 56.25 | 43.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Chang, Q.; Yu, Y.; Wu, H. Exterior and Internal Uniform Loading of Pt Nanoparticles on Yolk-Shell La2O3 by Acoustic Levitation Synthesis with Enhanced Photocatalytic Performance. Materials 2020, 13, 107. https://doi.org/10.3390/ma13010107
Qin M, Chang Q, Yu Y, Wu H. Exterior and Internal Uniform Loading of Pt Nanoparticles on Yolk-Shell La2O3 by Acoustic Levitation Synthesis with Enhanced Photocatalytic Performance. Materials. 2020; 13(1):107. https://doi.org/10.3390/ma13010107
Chicago/Turabian StyleQin, Ming, Qing Chang, Yinkai Yu, and Hongjing Wu. 2020. "Exterior and Internal Uniform Loading of Pt Nanoparticles on Yolk-Shell La2O3 by Acoustic Levitation Synthesis with Enhanced Photocatalytic Performance" Materials 13, no. 1: 107. https://doi.org/10.3390/ma13010107
APA StyleQin, M., Chang, Q., Yu, Y., & Wu, H. (2020). Exterior and Internal Uniform Loading of Pt Nanoparticles on Yolk-Shell La2O3 by Acoustic Levitation Synthesis with Enhanced Photocatalytic Performance. Materials, 13(1), 107. https://doi.org/10.3390/ma13010107