Optimum Particle Size of Treated Calcites for CO2 Capture in a Power Plant
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of Samples
3.2. CO2 Adsorption Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The International Energy Agency (IEA). Available online: https://www.iea.org/about/ (accessed on 20 February 2019).
- The Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/about/ (accessed on 20 February 2019).
- Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage; Prepared by Working Group III of the IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_wholereport-1.pdf (accessed on 17 April 2019).
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 2018, 11, 1062. [Google Scholar] [CrossRef]
- Reiner, D.M. Learning through a portfolio of carbon capture and storage demonstration projects. Nat. Energy 2016, 1, 15011. [Google Scholar] [CrossRef] [Green Version]
- GCCSI, Large-scale CCS Projects, Global CCS Institute. Available online: https://www.globalccsinstitute.com/wp-content/uploads/2019/04/TL-Report-Policy-prorities-to-incentivise-the-large-scale-deployment-of-CCS-digital-final-2019.pdf (accessed on 17 April 2019).
- Fuss, S.; Canadell, J.G.; Peters, G.P.; Tavoni, M.; Andrew, R.M.; Ciais, P.; Jackson, R.B.; Jones, C.D.; Kraxner, F.; Nakicenovic, N.; et al. Betting on negative emissions. Nat. Clim. Change 2014, 4, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Nookuea, W.; Li, H.; Thorin, E.; Yan, J. Property impacts on Carbon Capture and Storage (CCS) processes: a review. Energy Convers. Manag. 2016, 118, 204–222. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilization technologies: a critical analysis and comparison of their life cycle environmental impacts. J. CO2 Utilization 2015, 9, 82–102. [Google Scholar]
- Styring, P.; Jansen, D.; de Coninck, H.; Reith, H.; Armstrong, K. Carbon capture and utilization in the green economy. Centre for low carbon futures. 2011. Available online: http://co2chem.co.uk/wp-content/uploads/2012/06/CCU%20in%20the%20green%20economy%20report.pdf (accessed on 17 April 2019).
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Vega, F.; Alonso-Fariñas, B.; Vilches Arenas, L.F.; Navarrete, B. Carbon capture and utilization technologies: A literature review and recent advances. Energy Sources Part A Recovery Utilization Environ. Eff. 2019, 41, 1403–1433. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Ling, T.C.; Juan, J.C.; Lee, D.-J.; Chang, J.-S.; Show, P.L. Biorefineries of carbon dioxide: from carbon capture and storage (CCS) to bioenergies production. Bioresource Technol. 2016, 215, 346–356. [Google Scholar] [CrossRef]
- Alaswad, A.; Dassisti, M.; Prescott, T.; Olabi, A. Technologies and developments of third generation biofuel production. Renew. Sustain. Energy Rev. 2015, 51, 1446–1460. [Google Scholar] [CrossRef]
- Ströhle, J.; Junk, M.; Kremer, J.; Galloy, A.; Epple, B. Carbonate looping experiments in a 1 MWth pilot plant and modelvalidation. Fuel 2014, 127, 13–22. [Google Scholar] [CrossRef]
- Arias, B.; Diego, M.E.; Abanades, J.C.; Lorenzo, M.; Diaz, L.; Martínez, D.; Alvarez, J.; Sánchez-Biezma, A. Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping pilot. Int. J. Greenhouse Gas Control 2013, 18, 237–245. [Google Scholar] [CrossRef]
- Abanades, J.C. The maximum capture efficiency of CO2 using a carbonation/calcinations cycle of CaO/CaCO3. Chem. Eng. J. 2002, 90, 303–306. [Google Scholar] [CrossRef]
- Abanades, J.C.; Alvarez, D. Conversion limits in the reaction of CO2 with lime. Energy Fuels 2003, 17, 308–315. [Google Scholar] [CrossRef]
- Grasa, G.S.; Abanades, J.C.; Alonso, M.; González, B. Reactivity of highly cycled particles of CaO in a carbonation/calcination loop. Chem. Eng. J. 2008, 137, 561–567. [Google Scholar] [CrossRef]
- Escosa, J.M.; Cortés, C.; Romeo, L.M. Repowering of the fossil fuel power plants and reversible carbonation/calcination cycle for CO2 abatement. Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE2005), Orlando, FL, USA, 5–11 November 2005. [Google Scholar]
- Luo, C.; Zheng, Y.; Guo, J.; Feng, B. Effect of sulfation on CO2 capture of CaO-based sorbents during calcium looping cycle. Fuel 2014, 127, 124–130. [Google Scholar] [CrossRef]
- Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (Recast). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:334:0017:0119:en:PDF (accessed on 17 April 2019).
- Marsh, D.W.; Ulrichson, D.L. Rate and diffusional study of the reaction of calcium oxide with sulfur dioxide. Chem. Eng. Sci. 1985, 40, 423–433. [Google Scholar] [CrossRef]
- Barker, R. The reversibility of the reaction CaCO3 = CaO + CO2. J. Appl. Chem. Biotechnol. 1973, 23, 733–742. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Perlmutter, D.D. Effect of the product layer on the kinetics of the CO2-lime reaction. AlChE J. 1983, 29, 79–86. [Google Scholar] [CrossRef]
- Mess, D.; Sarofim, A.F.; Longwell, J.P. Product layer diffusion during the reaction of calcium oxide with carbon dioxide. Energy Fuels 1999, 13, 999–1005. [Google Scholar] [CrossRef]
- Shimizu, T.; Hirama, T.; Hosoda, H.; Kitano, K.; Inagaki, M.; Tejima, K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Trans. IChemE 1999, 77 Pt A, 62–68. [Google Scholar] [CrossRef]
- Silaban, A.; Narcida, M.; Harrison, D.P. Charactertics of the reversible reaction between CO2(g) and calcined dolomite. Chem. Eng. Commun. 1996, 146, 149–162. [Google Scholar] [CrossRef]
- Aihara, M.; Nagai, T.; Matsushita, J.; Negishi, Y.; Ohya, H. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction. Appl. Energy 2001, 69, 225–238. [Google Scholar] [CrossRef]
- Prigiobbe, V.; Palettini, A.; Baciocchi, R. Gas-solid carbonation kinetics of Air Pollution Control residues for CO2 storage. Chem. Eng. J. 2009, 148, 270–278. [Google Scholar] [CrossRef]
- Stendardo, S.; Foscolo, P.V. Carbon dioxide capture with dolomite: A model for gas-solid reaction within the grains of a particulate sorbent. Chem. Eng. Sci. 2009, 64, 2343–2352. [Google Scholar] [CrossRef]
- Sun, P.; Grace, J.R.; Lin, C.J.; Anthony, E.J. Adiscrete-pore-size-distribution-based gas–solid model and its application to the CaO + CO2 reaction. Chem. Eng. Sci. 2008, 63, 57–70. [Google Scholar] [CrossRef]
- Fernandez Bertos, M.; Simons, S.J.R.; Hills, C.D.; Corey, P.J. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J. Hazard. Mater. 2004, B112, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, N.; Yn, J.; Yamgnchy, A. Effect of porosity on carbonation and hydration resistance of CaO materials. J. Eur. Ceram. Soc. 2007, 27, 1953–1959. [Google Scholar] [CrossRef]
- Beruto, D.T.; Botter, R. Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid-gas reaction and to form a non-protective solid product layer at 20 °C. J. Eur. Ceram. Soc. 2000, 20, 497–503. [Google Scholar] [CrossRef]
- Montes-Hernández, G.; Chiriac, R.; Toche, F.; Renard, F. Gas-Solid carbonation of Ca(OH)2 and CaO particles under non-isothermal and isothermal conditions by using a thermogravimetric analyzer: implications for CO2 capture. Int. J. Greenhouse Gas Control 2012, 11, 172–180. [Google Scholar] [CrossRef]
- Materic, V.; Smedley, S.I. High Temperature Carbonation of Ca(OH)2. Ind. Eng. Chem. Res. 2011, 50, 5927–5932. [Google Scholar] [CrossRef]
- Blamey, J.; Lu, D.Y.; Fenell, P.S.; Anthony, E. Reactivation of CaO-Based Sorbents for CO2 capture: mechanism for the carbonation of Ca(OH)2. Ind. Eng. Chem. Res. 2011, 50, 10329–10334. [Google Scholar] [CrossRef]
- Yong, Z.; Mata, V.; Rodrigues, A.E. Adsorption of carbon dioxide at high temperature-a review. Sep. Purif. Technol. 2002, 26, 195–205. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- The Powder Diffraction; International Centre for Diffraction Data (ICDD): Newtown Square, PA, USA, 2003.
- Silcox, G.D.; Kramlich, J.C.; Pershing, D.W. A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles. Ind. Eng. Chem. Res. 1989, 28, 155–160. [Google Scholar] [CrossRef]
- García-Labiano, F.; Abad, A.; Diego, L.F.; Gayán, P.; Adánez, J. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chem. Eng. Sci. 2002, 57, 2381–2393. [Google Scholar]
- Blamey, J.; Anthony, E.J.; Wang, J.; Fennell, P.S. The calcium looping cycle for large-scale CO2 capture. Prog. Energy Combust. Sci. 2010, 36, 260–279. [Google Scholar] [CrossRef]
- Nikulshina, V.; Gebald, C.; Steinfeld, A. CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor. Chem. Eng. J. 2009, 146, 244–248. [Google Scholar] [CrossRef]
Material | SBET a (m2 g−1) | Smp b (m2 g−1) | Vp c (10−2 cm3 g−1) | Dp d (nm) | Seq e (m2 g−1) |
---|---|---|---|---|---|
A15 | 2.7 | 0 | 0.82 | 2.89 | 10.8 |
A15C | 4.4 | 0 | 0.99 | 2.89 | 12.9 |
A15CH | 21.3 | 0 | 8.84 | 3.79 | 18.4 |
A1045 | 4.7 | 0 | 1.72 | 2.77 | 10.9 |
A1045C | 4.5 | 0 | 1.16 | 2.77 | 11.9 |
A1045CH | 13.8 | 0 | 5.70 | 3.97 | 15.4 |
A1M1 | 3.1 | 0 | 0.88 | 2.89 | 10.4 |
A1M1C | 3.9 | 0 | 0.92 | 3.17 | 12.1 |
A1M1CH | 18.9 | 0 | 5.87 | 3.97 | 19.1 |
Sample | Δweight (%) | Δweight a (%) | Total Loss of Water (%) | Total loss (%) | Ca(OH)2 (%) | CaO b (%) | CaO c (%) |
---|---|---|---|---|---|---|---|
A15 | −41.81 | −44.00 | - | −41.81 | - | - | |
A15C | +26.66 | +78.48 | - | −26.66 | - | 100.00 | 33.97 |
A15CH | +26.07 | +64.68 | −7.72 | −33.79 | 31.80 | 68.20 | 27.85 |
A1045 | −41.12 | −44.00 | - | −41.12 | - | - | |
A1045C | +32.98 | +78.48 | - | −32.98 | - | 100.00 | 33.51 |
A1045CH | +25.64 | +66.88 | −6.50 | −32.14 | 26.75 | 73.25 | 28.28 |
A1M1 | −41.86 | −44.00 | - | −41.86 | - | - | |
A1M1C | +33.05 | +78.48 | - | −33.05 | - | 100.00 | 42.11 |
A1M1CH | +28.39 | +63.39 | −8.45 | −36.84 | 34.80 | 65.20 | 31.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quesada Carballo, L.; Perez Perez, M.d.R.; Cantador Fernández, D.; Caballero Amores, A.; Fernández Rodríguez, J.M. Optimum Particle Size of Treated Calcites for CO2 Capture in a Power Plant. Materials 2019, 12, 1284. https://doi.org/10.3390/ma12081284
Quesada Carballo L, Perez Perez MdR, Cantador Fernández D, Caballero Amores A, Fernández Rodríguez JM. Optimum Particle Size of Treated Calcites for CO2 Capture in a Power Plant. Materials. 2019; 12(8):1284. https://doi.org/10.3390/ma12081284
Chicago/Turabian StyleQuesada Carballo, Luís, María del Rosario Perez Perez, David Cantador Fernández, Alvaro Caballero Amores, and José María Fernández Rodríguez. 2019. "Optimum Particle Size of Treated Calcites for CO2 Capture in a Power Plant" Materials 12, no. 8: 1284. https://doi.org/10.3390/ma12081284
APA StyleQuesada Carballo, L., Perez Perez, M. d. R., Cantador Fernández, D., Caballero Amores, A., & Fernández Rodríguez, J. M. (2019). Optimum Particle Size of Treated Calcites for CO2 Capture in a Power Plant. Materials, 12(8), 1284. https://doi.org/10.3390/ma12081284