# Effects of Shot Peening on Fretting Fatigue Crack Initiation Behavior

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Effects of Shot Peening on Material

## 3. Simulation Model

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Noraphaiphipaksa, N.; Manonukul, A.; Kanchanomai, C. Fretting fatigue with cylindrical-on-flat contact: Crack nucleation, crack path and fatigue life. Materials
**2017**, 10, 155. [Google Scholar] [CrossRef] [PubMed] - Pereira, K.; Wahab, M.A. Fretting fatigue crack propagation lifetime prediction in cylindrical contact using an extended MTS criterion for non-proportional loading. Tribol. Int.
**2017**, 115, 525–534. [Google Scholar] [CrossRef] - Li, Z.Y.; Cai, Z.B.; Wu, Y.P.; Meng, X.D.; Zhang, D.X. Fretting wear damage mechanism of uranium under various atmosphere and vacuum conditions. Materials
**2018**, 11, 607. [Google Scholar] [CrossRef] [PubMed] - Majzoobi, G.H.; Abbasi, F. On the effect of shot-peening on fretting fatigue of Al7075-T6 under cyclic normal contact loading. Surf. Coat. Technol.
**2017**, 328, 292–303. [Google Scholar] [CrossRef] - Majzoobi, G.H.; Nemati, J.; Novin Rooz, A.J.; Farrahi, G.H. Modification of fretting fatigue behavior of Al7075-T6 alloy by the application of titanium coating using IBED technique and shot peening. Tribol. Int.
**2009**, 42, 121–129. [Google Scholar] [CrossRef] - He, Y.; Xiao, G.J.; Li, W.; Huang, Y. Residual stress of a TC17 titanium alloy after belt grinding and its impact on the fatigue life. Materials
**2018**, 11, 2218. [Google Scholar] [CrossRef] [PubMed] - Zhang, H.Y.; Liu, J.X.; Zuo, Z.X. Numerical study of the effects of residual stress on fretting fatigue using XFEM. Materials
**2015**, 8, 7094–7105. [Google Scholar] [CrossRef] [PubMed] - Gujba, A.K.; Medraj, M. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials
**2014**, 7, 7925–7974. [Google Scholar] [CrossRef] [PubMed] - Tsuji, N.; Tanaka, S.; Takasugi, T. Effects of combined plasma-carburizing and shot-peening on fatigue and wear properties of Ti-6Al-4V alloy. Surf. Coat. Technol.
**2009**, 203, 1400–1405. [Google Scholar] [CrossRef] - Yang, Q.; Zhou, W.; Zhong, Y.; Zhang, X.; Fu, X.; Chen, G.; Li, Z. Effect of shot-peening on the fretting wear and crack initiation behavior of Ti-6Al-4V dovetail joint specimens. Int. J. Fatigue
**2018**, 107, 83–95. [Google Scholar] [CrossRef] - Li, K.; Fu, X.S.; Gai, R.D.; Li, Z.Q.; Zhou, W.L.; Chen, G.Q. Fretting fatigue characteristic of Ti-6Al-4V strengthened by wet peening. Int. J. Fatigue
**2016**, 85, 65–69. [Google Scholar] [CrossRef] - Liu, K.K.; Hill, M.R. The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons. Tribol. Int.
**2009**, 42, 1250–1262. [Google Scholar] [CrossRef] - Sabelkin, V.; Martinez, S.A.; Mall, S.; Sathish, S. Effects of shot-peening intensity on fretting fatigue crack-initiation behaviour of Ti-6Al-4V. Fatigue Fract. Eng. Mater.
**2010**, 28, 321–332. [Google Scholar] [CrossRef] - Vázquez, J.; Navarro, C.; Domínguez, J. A model to predict fretting fatigue life including residual stresses. Theor. Appl. Fract. Mech.
**2014**, 73, 144–151. [Google Scholar] [CrossRef] - H-Gangaraj, S.M.; Alvandi-Tabrizi, Y.; Farrahi, G.H.; Maizoobi, G.H.; Ghadbeigi, H. Finite element analysis of shot-peening effect on fretting fatigue parameters. Tribol. Int.
**2011**, 44, 1583–1588. [Google Scholar] [CrossRef] - Arnaud, P.; Fouvry, S.; Garcin, S. Fretting wear rate impact on Ti-6Al-4V fretting crack risk: Experimental and numerical comparison between cylinder/plane and punch/plane contact geometries. Tribol. Int.
**2017**, 108, 32–47. [Google Scholar] [CrossRef] - Zaroog, O.S.; Ali, A.; Sahari, B.B.; Zahari, R. Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy. Int. J. Fatigue
**2011**, 33, 279–285. [Google Scholar] [CrossRef] - Dao, M.; Chollacoop, N.; Vliet, K.J.V.; Venkatesh, T.A.; Suresh, S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater.
**2001**, 49, 3899–3918. [Google Scholar] [CrossRef] - Ramesh, C.S.; Anwar Khan, A.R.; Ravikumar, N.; Savanprabhu, P. Prediction of wear coefficient of Al6061-TiO
_{2}composites. Wear**2005**, 259, 602–608. [Google Scholar] [CrossRef] - Qiu, M.; Zhang, Y.; Zhu, J.; Luo, X. The effect of dynamic frictional heating on the dry sliding behaviors of M2 steel against GCr15 steel. Wear
**2006**, 261, 767–772. [Google Scholar] - Benedetti, M.; Fontanari, V.; Monelli, B.D. Numerical simulation of residual stress relaxation in shot peened high-strength aluminum alloys under reverse bending fatigue. J. Mater. Sci. Technol.
**2010**, 132, 11–12. [Google Scholar] [CrossRef] - Madge, J.J.; Leen, S.B.; Mccoll, I.R.; Shipway, P.H. Contact-evolution based prediction of fretting fatigue life: Effect of slip amplitude. Wear
**2007**, 262, 1159–1170. [Google Scholar] [CrossRef] - Labergere, C.; Saanouni, K.; Sun, Z.D. Prediction of low cycle fatigue life using cycles jumping integration scheme. Appl. Mech. Mater.
**2015**, 784, 308–316. [Google Scholar] [CrossRef] - Bhatti, N.A.; Pereira, K.; Wahab, M.A. A continuum damage mechanics approach for fretting fatigue under out of phase loading. Tribol. Int.
**2017**, 108, 87–94. [Google Scholar] [CrossRef] - Sun, Y.; Hu, W.; Shen, F.; Meng, Q. Numerical simulations of the fatigue damage evolution at a fastener hole treated by cold expansion or with interference fit pin. Int. J. Mech. Sci.
**2016**, 107, 188–200. [Google Scholar] [CrossRef] - Zhu, S.P.; Yue, P.; Yu, Z.Y.; Wang, Q.Y. A combined high and low cycle fatigue model for life prediction of turbine blades. Materials
**2007**, 10, 698–713. [Google Scholar] [CrossRef] [PubMed] - Heredia, S.; Fouvry, S.; Berthel, B.; Panter, J. A non-local fatigue approach to quantify Ti-10V-2Fe-3Al fretting cracking process: Application to grinding and shot peening. Tribol. Int.
**2011**, 44, 1518–1525. [Google Scholar] [CrossRef] - Naboulsi, S.; Mall, S. Fretting fatigue crack initiation behavior using process volume approach and finite element analysis. Tribol. Int.
**2003**, 36, 121–131. [Google Scholar] [CrossRef] - Proudhon, H.; Fouvry, S.; Buffiere, J.Y. A fretting crack initiation prediction taking into account the surface roughness and the crack nucleation process volume. Int. J. Fatigue
**2005**, 27, 569–579. [Google Scholar] [CrossRef] - Benedetti, M.; Fontanari, V.; Scardi, P.; Ricardo, C.L.A.; Bandini, M. Reverse bending fatigue of shot peened 7075-T651 aluminium alloy: The role of residual stress relaxation. Int. J. Fatigue
**2009**, 31, 1225–1236. [Google Scholar] [CrossRef]

**Figure 3.**The flow chart of Dao’s analysis algorithms [18].

**Figure 9.**Distribution of (

**a**) wear profile and (

**b**) contact pressure on the contact surface in 2000 loading cycles under fatigue loading ${\sigma}_{\mathrm{B}}=450$ MPa.

**Figure 10.**Distribution of average residual stress (by using the process volume method) in 2000 loading cycles under fatigue loading ${\sigma}_{\mathrm{B}}=450$ MPa.

**Figure 11.**The accumulated damage on the contact surface after material failure under fatigue loading ${\sigma}_{\mathrm{B}}=450$ MPa.

**Figure 12.**The evolution of accumulated damage at the crack initiation location with increasing cycle number under fatigue loading ${\sigma}_{\mathrm{B}}=450$ MPa.

**Figure 13.**The accumulated damage on the contact surface after material failure under fatigue loading ${\sigma}_{\mathrm{B}}=400$ MPa.

**Figure 14.**The evolution of accumulated damage at the crack initiation location with increasing cycle number under fatigue loading ${\sigma}_{\mathrm{B}}=400$ MPa.

**Figure 15.**The accumulated damage on the contact surface after material failure under fatigue loading ${\sigma}_{\mathrm{B}}=350$ MPa.

**Figure 16.**The evolution of accumulated damage at the crack initiation location with increasing cycle number under fatigue loading ${\sigma}_{\mathrm{B}}=350$ MPa.

**Figure 17.**Distribution of average residual stress (by using the process volume method) on the contact surface for (

**a**) 0.1 mmA and (

**b**) 0.2 mmA shot-peened specimens under fatigue loading ${\sigma}_{\mathrm{B}}=350$ MPa.

**Figure 18.**Residual stress versus the material layer depth with 20,000 and 80,000 cycles for different shot-peened cases.

Young’s Modulus E | Poisson’s Ratio $\mathit{\nu}$ | Yield Strength ${\mathit{\sigma}}_{\mathit{y}}$ | Tensile Strength ${\mathit{\sigma}}_{\mathit{b}}$ |
---|---|---|---|

72,000 MPa | 0.345 | 545 MPa | 654 MPa |

Cases | ${\mathit{a}}_{\mathbf{1}}$ | ${\mathit{b}}_{\mathbf{1}}$ | ${\mathit{c}}_{\mathbf{1}}$ | ${\mathit{a}}_{\mathbf{2}}$ | ${\mathit{b}}_{\mathbf{2}}$ | ${\mathit{c}}_{\mathbf{2}}$ | ${\mathit{a}}_{\mathbf{3}}$ | ${\mathit{b}}_{\mathbf{3}}$ | ${\mathit{c}}_{\mathbf{3}}$ | ${\mathit{a}}_{\mathbf{4}}$ | ${\mathit{b}}_{\mathbf{4}}$ | ${\mathit{c}}_{\mathbf{4}}$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|

0.1 mmA | 1265 | 0.1368 | 0.0245 | 1121 | 0.0226 | 2.127 | 409.8 | 0.0289 | 4.519 | 0 | 0 | 0 |

0.2 mmA | 1009 | 0.0104 | −0.0314 | 565.9 | 0.0190 | 1.746 | 280.7 | 0.0362 | 2.089 | 172 | 0.0401 | 4.574 |

**Table 3.**Material parameters of the Smith–Watson–Topper (SWT) model for aluminum 7075-T6 [25].

${\mathit{\sigma}}_{\mathbf{f}}^{\mathbf{\prime}}$ (MPa) | ${\mathit{\epsilon}}_{\mathbf{f}}^{\mathbf{\prime}}$ | b | c |
---|---|---|---|

1466 | 0.262 | −0.143 | −0.619 |

Cases | Unpeened | 0.1 mmA | 0.2 mmA |
---|---|---|---|

${\sigma}_{\mathrm{B}}=350$ MPa | 12,000 | 94,000 | 124,000 |

${\sigma}_{\mathrm{B}}=400$ MPa | 5250 | 12,000 | 10,250 |

${\sigma}_{\mathrm{B}}=450$ MPa | 2750 | 4000 | 3750 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, X.; Liu, J.; Zuo, Z.; Zhang, H.
Effects of Shot Peening on Fretting Fatigue Crack Initiation Behavior. *Materials* **2019**, *12*, 743.
https://doi.org/10.3390/ma12050743

**AMA Style**

Liu X, Liu J, Zuo Z, Zhang H.
Effects of Shot Peening on Fretting Fatigue Crack Initiation Behavior. *Materials*. 2019; 12(5):743.
https://doi.org/10.3390/ma12050743

**Chicago/Turabian Style**

Liu, Xin, Jinxiang Liu, Zhengxing Zuo, and Huayang Zhang.
2019. "Effects of Shot Peening on Fretting Fatigue Crack Initiation Behavior" *Materials* 12, no. 5: 743.
https://doi.org/10.3390/ma12050743