Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure
Abstract
1. Introduction
2. Experimental Procedures
3. Results
3.1. Synthesis and Characterization of the Novel Ceramic Faraday Rotator Material
3.2. Optical Properties of the Advanced Materials
4. Discussion
5. Conclusions
- (1)
- Optical-grade polycrystalline TYO ceramics with extremely low scattering were successfully produced for the first time.
- (2)
- The Verdet constants of the TYO ceramics increased with increasing Tb concentration in the Bixbyite structure, and Tb2O3 showed the highest value: 3.8 times higher than that of the commercially available TGG single crystal.
- (3)
- The Faraday rotation characteristics of the polycrystalline TYO ceramics were basically comparable to those of single-crystal isolator materials. In addition, one of the advantages was the possession of a large extinction ratio and a large Verdet constant, which can improve the performance of the isolator and downsize the device.
- (4)
- The laser damage threshold of the TYO ceramics was as high as 18 J/cm2 and they were resistant to pulsed laser damage (power density 78 MW/cm2 and no damage during a 7000-hour durability test at 2 MHz).
- (5)
- The thermal lens value, 1/f = 0.40 m−1, of the TYO ceramics was slightly larger than that of TGG, probably due to a remaining trace amount of Tb4+ ions in the material. One of the remaining issues is to be able to use it for high-power and continuous-wave laser applications.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ikesue, A.; Kinoshita, T.; Kamata, K.; Yoshida, K. Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers. J. Am. Ceram. Soc. 1995, 78, 1033–1040. [Google Scholar] [CrossRef]
- Sanghera, J.; Kim, W.; Villalobos, G.; Shaw, B.; Backer, C.; Frantz, J.; Sadowski, B.; Aggarwal, I. Ceramic Laser Materials. Materials 2012, 5, 258–277. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, B.M.; Bhachu, B.S.; Cutter, K.P.; Fochs, S.N.; Letts, S.A.; Parks, C.W.; Rotter, M.D.; Soules, T.F. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser. In Proceedings of the Advanced Solid-State Photonics, Nara, Japan, 27–30 January 2008; p. WC5. [Google Scholar]
- Tokurakawa, M.; Takaichi, K.; Shirakawa, A.; Ueda, K.; Yagi, H.; Hosokawa, S.; Yanagitani, T.; Kaminskii, A.A. Diode-pumped mode-locked Yb3+:Lu2O3 Ceramic Laser. Opt. Express 2006, 14, 12832–12838. [Google Scholar] [CrossRef] [PubMed]
- Young, A.T. Rayleigh scattering. Appl. Opt. 1981, 20, 522–535. [Google Scholar] [CrossRef]
- Strutt, J. On the scattering of light by small particles. Philos. Mag. 1871, 41, 447–454. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.; Taira, T.; Kamimura, T.; Yoshida, K.; Messing, G. Progress in Ceramics Lasers. Annu. Rev. Mater. Res. 2006, 36, 397–429. [Google Scholar] [CrossRef]
- Kong, L.B.; Huang, Y.; Que, W.; Zhang, T.; Li, S.; Zhang, J.; Dong, Z.; Tang, D. Transparent Ceramics. In Mining, Metallurgy and Material Engineering; Bergmann, C.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ikesue, A.; Aung, Y.L. Ceramic Laser Materials. Nat. Photonics 2008, 21, 721–726. [Google Scholar] [CrossRef]
- Tamaki, T.; Kaneda, H.; Kawamura, N. Magnet-optical properties of terbium bismuth iron oxide ((TbBi)3Fe5O12) and its application to a 1.5 μm wideband optical isolator. J. Appl. Phys. 1991, 70, 4581–4583. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Xu, X.W.; Chong, T.C. Faraday rotation spectra of bismuth-substituted rare-earth iron garnet crystals in optical communication band. J. Appl. Phys. 2004, 95, 5267–5270. [Google Scholar] [CrossRef]
- Khazanov, E.; Andreev, N.; Palashov, O.; Poteomkin, A.; Sergeev, A.; Mehl, O.; Reitze, D.H. Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at High Average Power. Appl. Opt. 2002, 41, 483–492. [Google Scholar] [CrossRef]
- Barnes, N.P.; Petway, L.B. Variation of the Verdet constant with temperature of terbium gallium garnet. J. Opt. Soc. Am. B 1992, 9, 1912–1915. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V.; Voitovich, A.V.; Karimov, D.N.; Ivanov, I.A. Investigation of Thermo-Optical Characteristics of Magneto-Active Crystal Na0.37Tb0.63F2.26. Opt. Lett. 2015, 40, 4919–4922. [Google Scholar] [CrossRef] [PubMed]
- Karimov, D.N.; Sobolev, B.P.; Ivanov, I.A.; Kanorsky, S.I.; Masalov, A.V. Growth and Magneto-Optical Properties of Na0.37Tb0.63F2.26 Cubic Single Crystal. Crystallogr. Rep. 2014, 59, 718–723. [Google Scholar] [CrossRef]
- Yasuhara, R.; Snetkov, I.; Starobor, A.; Mironov, E.; Palashov, O. Faraday rotator based on TSAG crystal with <001> orientation. Opt. Express 2016, 24, 15486–15493. [Google Scholar] [CrossRef]
- Adachi, G. Physics and Chemistry of Yttrium Compounds. Bull. Ceram. Soc. Jpn. 1988, 23, 430–437. [Google Scholar]
- Coutures, J.P.; Vegers, R.; Foex, M. Comparison of solidification temperatures of different rare earth sesquioxides; effect of atmosphere. Rev. Int. Hautes Temp. Refract. 1975, 12, 181–185. [Google Scholar]
- Aung, Y.L.; Ikesue, A. Development of optical grade (TbxY1−x)3Al5O12 ceramics as Faraday rotator material. J. Am. Ceram. Soc. 2017, 100, 4081–4087. [Google Scholar] [CrossRef]
- Stevens, K.T.; Schlichting, W.; Foundos, G.; Payne, A.; Rogers, E. Promising materials for high power laser isolators. Laser Tech. J. 2016, 3, 18–21. [Google Scholar] [CrossRef]
- Guo, F.; Sun, Y.; Yang, X.; Chen, X.; Zhao, B.; Zhuang, N.; Chen, J. Growth, Faraday and inverse Faraday characteristics of Tb2Ti2O7 crystal. Opt. Express 2016, 24, 5734–5743. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Kagamitani, Y.; Pawlak, D.A.; Sto, H.; Machida, H.; Fukuda, T. Czochralski Growth of Tb3Sc2Al3O12 Single Crystal for Faraday Rotator. Mater. Res. Bull. 2002, 37, 1–10. [Google Scholar] [CrossRef]
- Geho, M.; Takagi, T.; Chiku, S.; Fujii, T. Development of Optical Isolators for visible light using Terbium Aluminum Garnet (Tb3Al5O12) Single Crystals. Jpn. J. Appl. Phys. 2005, 44, 4967–4970. [Google Scholar] [CrossRef]
- Ganschow, S.; Klimm, D.; Reiche, P.; Uecker, R. On the Crystallization of Terbium Aluminum Garnet. Cryst. Technol. 1999, 34, 615–619. [Google Scholar] [CrossRef]
- Yoshida, H.; Tsubakimoto, K.; Fujimoto, Y.; Mikami, K.; Fujita, H.; Miyanaga, N.; Nozawa, H.; Yagi, H.; Yanaggitani, T.; Nagaya, Y.; et al. Optical Properties and Faraday Effect of Ceramic Terbium Gallium Garnet for a Room Temperature Faraday Rotator. Opt. Express 2011, 19, 15181–15197. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, R.; Tokita, S.; Kawanaka, J.; Kawashima, T.; Kan, H.; Yagi, H.; Nozawa, H.; Yanagitani, T.; Fujimoto, Y.; Yoshida, H.; et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 2007, 15, 11255–11261. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, R.; Snetkov, I.; Starobor, A.; Zheleznov, D.; Palashoz, O.; Khazanov, E.; Yanagitani, T. TGG Ceramics Faraday Rotator for High Power Laser Application. Opt. Lett. 2014, 39, 1145. [Google Scholar] [CrossRef] [PubMed]
- Zheleznov, D.; Atarobor, A.; Palashov, O.; Chen, C.; Zhou, S. High Power Faraday Isolators based on TAG Ceramics. Opt. Express 2014, 22, 2578–2583. [Google Scholar] [CrossRef] [PubMed]
- Zheleznov, D.; Atarobor, A.; Palashov, O.; Lin, H.; Zhou, S. Improving Characteristics of Faraday Isolator based on TAG Ceramics by Cerium Doping. Opt. Lett. 2014, 39, 2183–2186. [Google Scholar] [CrossRef]
- Makikawa, S.; Yahagi, A.; Ikesue, A. Transparent Ceramic, Method for Manufacturing Same, and Magneto-Optical Device. U.S. Patent 9,470,915, 10 October 2016. [Google Scholar]
- Veber, P.; Velazquez, M.; Gardet, G.; Rytz, D.; Peltz, M.; Decourt, R. Fluxgrowth at 1230 °C of Cubic Tb2O3 Single Crystals and Characterization of their Optical and Magnetic Properties. Cryst. Eng. Commun. 2015, 17, 492–497. [Google Scholar] [CrossRef]
- Snetkov, I.L.; Permin, D.A.; Balabanov, S.S.; Palashov, O.V. Wavelength Dependence of Verdet constant of Tb3+:Y2O3 Ceramics. J. Appl. Phys. Lett. 2016, 108, 161905. [Google Scholar] [CrossRef]
- Ikesue, A.; Aung, Y.L.; Makikawa, S.; Yahagi, A. Polycrystalline (TbxY1−x)2O3 Faraday Rotator. Opt. Lett. 2017, 42, 4399–4401. [Google Scholar] [CrossRef]
- Wang, L.; Huang, H.; Shen, D.; Zhang, J.; Chen, H.; Wang, Y.; Liu, X.; Tang, D. Room Temperature continuous-wave Laser Performance of LD pumped Er:Lu2O3 and Er:Y2O3 Ceramics at 2.7 μm. Opt. Exp. 2014, 22, 19495–19503. [Google Scholar] [CrossRef] [PubMed]
- Newburgh, G.A.; Word-Daniels, A.; Michael, A.; Merkle, L.D.; Dubinskii, A.I.M. Resonantly Diode-Pumped Ho3+:Y2O3 Ceramic 2.1 μm Laser. Opt. Express 2011, 19, 3604. [Google Scholar] [CrossRef] [PubMed]
- Kagamitani, Y.; Pawlak, D.A.; Sato, H.; Yoshikawa, A.; Martinek, J.; Machhida, H.; Fukuda, T. Dependence of Faraday Effect on the Orientation of Terbium- Scandium- Aluminum Garnet Single Crystal. J. Mater. Res. 2004, 19, 579–583. [Google Scholar] [CrossRef]
- Kohli, J.T. Volume 67 Ceramic Transaction. In Faraday Effect in Lanthanide-Doped Oxide Glasses; American Ceramic Society: Westerville, OH, USA, 1995; pp. 125–136. ISBN 1-57498-012-2. [Google Scholar]
- Stadler, B.J.H.; Vaccaro, K.; Davis, A.; Martin, E.A.; Lorenzo, J.P. Volume 60 Ceramic Transaction. In Characterization of Magneto-Optical Mn-Doped InGaAsP Thin Films on InP; American Ceramic Society: Westerville, OH, USA, 1995; pp. 195–204. ISBN 1-57498-003-3. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikesue, A.; Aung, Y.L.; Makikawa, S.; Yahagi, A. Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure. Materials 2019, 12, 421. https://doi.org/10.3390/ma12030421
Ikesue A, Aung YL, Makikawa S, Yahagi A. Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure. Materials. 2019; 12(3):421. https://doi.org/10.3390/ma12030421
Chicago/Turabian StyleIkesue, Akio, Yan Lin Aung, Shinji Makikawa, and Akira Yahagi. 2019. "Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure" Materials 12, no. 3: 421. https://doi.org/10.3390/ma12030421
APA StyleIkesue, A., Aung, Y. L., Makikawa, S., & Yahagi, A. (2019). Total Performance of Magneto-Optical Ceramics with a Bixbyite Structure. Materials, 12(3), 421. https://doi.org/10.3390/ma12030421