Next Article in Journal
Influence of Surface Preparation Method on the Bond Behavior of Externally Bonded CFRP Reinforcements in Concrete
Next Article in Special Issue
Key Role of Precursor Nature in Phase Composition of Supported Molybdenum Carbides and Nitrides
Previous Article in Journal
Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation
Open AccessFeature PaperArticle

Magnetic Fe2O3–SiO2–MeO2–Pt (Me = Ti, Sn, Ce) as Catalysts for the Selective Hydrogenation of Cinnamaldehyde. Effect of the Nature of the Metal Oxide

Depto. Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
Deparment of Chemical Engineering, Biotechnology and Materials, FCFM, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile
Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago 8340518, Chile
Author to whom correspondence should be addressed.
Materials 2019, 12(3), 413;
Received: 27 December 2018 / Revised: 22 January 2019 / Accepted: 23 January 2019 / Published: 29 January 2019
(This article belongs to the Special Issue Heterogeneous Catalysts Synthesis and Characterization)
The type of metal oxide affects the activity and selectivity of Fe2O3–SiO2–MeO2–Pt (Me = Ti, Sn, Ce) catalysts on the hydrogenation of cinnamaldehyde. The double shell structure design is thought to protect the magnetic Fe2O3 cores, and also act as a platform for depositing a second shell of TiO2, SnO2 or CeO2 metal oxide. To obtain a homogeneous metallic dispersion, the incorporation of 5 wt % of Pt was carried out over Fe2O3–SiO2–MeO2 (Me = Ti, Sn, Ce) structures modified with (3-aminopropyl)triethoxysilane by successive impregnation-reduction cycles. The full characterization by HR-TEM, STEM-EDX, XRD, N2 adsorption isotherm at −196 °C, TPR-H2 and VSM of the catalysts indicates that homogeneous core-shell structures with controlled nano-sized magnetic cores, multi-shells and metallic Pt were obtained. The nature of the metal oxide affects the Pt nanoparticle sizes where the mean Pt diameter is in the order: –TiO2–Pt > –SnO2–Pt > –CeO2–Pt. Among the catalysts studied, –CeO2–Pt had the best catalytic performance, reaching the maximum of conversion at 240 min. of reaction without producing hydrocinnamaldehyde (HCAL). It also showed a plot volcano type for the production of cinnamic alcohol (COL), with 3-phenyl-1-propanol (HCOL) as a main product. The –SnO2–Pt catalyst showed a poor catalytic performance attributable to the Pt clusters’ occlusion in the irregular surface of the –SnO2. Finally, the –TiO2–Pt catalyst showed a continuous production of COL with a 100% conversion and 65% selectivity at 600 min of reaction. View Full-Text
Keywords: nanocatalyst; core shell; hydrogenation nanocatalyst; core shell; hydrogenation
Show Figures

Graphical abstract

MDPI and ACS Style

Dinamarca, R.; Espinoza-González, R.; Campos, C.H.; Pecchi, G. Magnetic Fe2O3–SiO2–MeO2–Pt (Me = Ti, Sn, Ce) as Catalysts for the Selective Hydrogenation of Cinnamaldehyde. Effect of the Nature of the Metal Oxide. Materials 2019, 12, 413.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop