Crystalline Structure, Synthesis, Properties and Applications of Potassium Hexatitanate: A Review
Abstract
:1. Introduction
2. Potassium Hexatitanate
2.1. Structure
2.2. Properties
2.3. Methods of Synthesis
2.3.1. Calcination (Solid-State Reaction)
2.3.2. Hydrothermal Reaction
2.3.3. Flux Growth
2.3.4. Ionic Exchange
2.3.5. Sol-Gel Method
2.3.6. Comparison of Synthesis Methodologies
2.4. Applications
2.4.1. PHT as Reinforcing Agent
2.4.2. PHT as Photocatalyst
2.4.3. Other Applications
3. Conclusions
Author Contributions
Fundings
Conflicts of Interest
References
- Xu, C.-Y.; Zhang, Q.; Zhang, H.; Zhen, L.; Tang, J.; Qin, L.-C. Synthesis and Characterization of Single-Crystalline Alkali Titanate Nanowires. J. Am. Chem. Soc. 2005, 127, 11584–11585. [Google Scholar] [CrossRef]
- Kajiwara, M. The formation of potassium titanate fibre with flux methods. J. Mater. Sci. 1987, 22, 1223–1227. [Google Scholar] [CrossRef]
- Yokoyama, M.; Ota, T.; Yamai, I. Preparation of potassium hexatitanate long fibre by the flux evaporation method. J. Mater. Sci. 1989, 24, 3787–3790. [Google Scholar] [CrossRef]
- Kajiwara, M. The synthesis of potassium titanate fibre by flux evaporation methods. J. Mater. Sci. 1988, 23, 3600–3602. [Google Scholar] [CrossRef]
- Berry, K.L.; Aftandilian, V.D.; Gilbert, W.W.; Meibohm, E.P.H. Potassium tetra- and hexatitanates. J. Lnorg. Nucl. Chem. 1960, 14, 231–239. [Google Scholar] [CrossRef]
- Marchand, R.; Brohan, L.; Tournoux, M. TiO2 (B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mat. Res. Bull. 1980, 15, 1129–1133. [Google Scholar] [CrossRef]
- Massaki, N.; Uchida, S.; Yamane, H.; Sato, T. Hydrothermal synthesis of potassium titanates in Ti-KOH-H2O system. J. Mater. Sci. 2000, 35, 3307–3311. [Google Scholar] [CrossRef]
- Sikuvhihulu, L.C.; Coville, N.J.; Ntho, T.; Scurrell, M.S. Potassium Titanate: An Alternative Support for Gold Catalyzed Carbon Monoxide Oxidation? Catal. Lett. 2008, 123, 193–197. [Google Scholar] [CrossRef]
- Watts, J.A. K3Ti8O17 a New Alkali Titanate Bronze. J. Solid State Chem. 1970, 1, 319–325. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, T.; Zhang, Y. A novel way to synthesize potassium titanates. Mater. Lett. 2006, 60, 203–205. [Google Scholar] [CrossRef]
- Cheng, P.S.; Lin, Y.H.; Hsieh, Y.T.; Yang, C.F. Effects of different synthesizing processes on the dielectric and piezoelectric properties of 0.65(K0.5Bi0.5TiO3)-0.35BaTiO3 ceramics. Ceram. Int. 2014, 40, 629–635. [Google Scholar] [CrossRef]
- Watanabe, M.; Komatsu, Y.; Sasaki, T.; Fujiki, Y. New oxidation process of potassium titanium dioxide bronze with the hollandite structure. J. Solid State Chem. 1991, 92, 80–87. [Google Scholar] [CrossRef]
- Zaremba, T.; Witkowska, D. Methods of Manufacturing of Potassium Titanate fibers and whiskers. A Review. Mater. Sci. -Pol. 2010, 28, 25–40. [Google Scholar]
- Zaremba, T. Molten Salt Synthesis of potassium hexatitanate. Mater. Sci. Pol. 2012, 30, 180–188. [Google Scholar]
- Liu, C.; He, M.; Lu, X.; Zhang, Q.; Xu, Z. Reaction and crystallization mechanism of potassium dititanate fibers synthesized by low-temperature calcination. Cryst. Growth Des. 2005, 5, 1399–1404. [Google Scholar] [CrossRef]
- Myeong-Heon, U. Thermal treatment of titanates derivatives synthesized by ion-exchange reaction. J. Am. Ceram. Soc. 2001, 84, 1181–1183. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Yang, J.; Chen, J.; Zhang, Z. Microwave-assisted synthesis of potassium titanate nanowires. Mater. Lett. 2006, 60, 3015–3017. [Google Scholar] [CrossRef]
- Inoue, Y.; Kubokawa, T.; Sato, K. Photocatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water. J. Phys. Chem. 1991, 95, 4059–4063. [Google Scholar] [CrossRef]
- Roine HSC Chemistry®, Version 7.0. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database; Outotec: Pori, Finland, 2010. [Google Scholar]
- Bao, N.; Lu, X.; Ji, X.; Feng, X.; Xie, J. Thermodynamic modeling and experimental verification for oin-exchange synthesis of K2O.6TiO2 and TiO2 fibers from K2O.4TiO2. Fluid Phase Equilibr. 2002, 193, 229–243. [Google Scholar] [CrossRef]
- Bao, N.; Feng, X.; Lu, X.; Yang, Z. Study on the formation and growth of potassium titanate whiskers. J. Mater. Sci. 2002, 37, 3035–3043. [Google Scholar] [CrossRef]
- Yaxin, Z.; Chang, L.; Ming, H.; Zhuhong, Y.; Xin, F.; Xiaohua, L. Preparation and Characterization of Alkaline Resistant Porous Ceramics from Potassium Titanate Whiskers. Chin. J. Chem. Eng. 2007, 15, 742–747. [Google Scholar] [CrossRef]
- Wu, S.Q.; Wei, Z.S.; Tjong, S.C. The mechanical and thermal expansion behavior or an Al-Si alloy composite reinforced with potassium titanate whisker. Compos. Sci. Technol. 2000, 60, 2873–2880. [Google Scholar] [CrossRef]
- Cid-Dresdner, H.; Buerger, M.J. The crystal structure of potassium hexatitanate K2Ti6013. Z. Fiir Krist. 1962, 117, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Manyu, H.; Yimin, L.; Chunguang, L.; Xi, L. Structural, electronic and elastic properties of potassium hexatitanato crystal from first-principles calculations. Phys. B 2012, 407, 2811–2815. [Google Scholar] [CrossRef]
- Takaya, S.; Lu, Y.; Guan, S.; Miyazawa, K.; Yoshida, H.; Asanuma, H. Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity. Surf. Coat. Technol. 2015, 275, 260–263. [Google Scholar] [CrossRef]
- Li, G.L.; Wang, G.H.; Hong, J.M. Synthesis and characterization of K2Ti6O13 whiskers with diameter on nanometer scale. J. Mater. Sci. Lett. 1999, 18, 1865–1867. [Google Scholar] [CrossRef]
- Jung, K.T.; Shul, Y.G. Synthesis of High Surface Area Potassium Hexatitanate Powders by Sol-Gel Method. J. Sol.-Gel Sci. Technol. 1996, 6, 227–233. [Google Scholar] [CrossRef]
- Choy, J.; Han, Y. A combinative flux evaporation-slow cooling route to potassium titanate fibers. Mater. Lett. 1998, 34, 111–118. [Google Scholar] [CrossRef]
- Hakuta, Y.; Hayashi, H.; Arai, K. Hydrothermal synthesis of photocatalyst potassium hexatitanate nanowires under supercritical conditions. J. Mater. Sci. 2004, 39, 4977–4980. [Google Scholar] [CrossRef]
- Ponce-Peña, P.; González-Lozano, M.A.; Escobedo-Bretado, M.A.; De Lira-Gómez, P.; García-Sánchez, E.; Rivera, E.; Alexandrova, L. Synthesis and characterization of potassium hexatitanate using boric acid as the flux. Ceram. Int. 2015, 41, 10051–10056. [Google Scholar] [CrossRef]
- Yahya, R.; Hassan, A.; Aiyub, Z. Structural studies of potassium hexatitanates prepared under hydrothermal and solid state conditions. Mater. Sci. Forum 2006, 517, 222–226. [Google Scholar] [CrossRef]
- Callister, W.D. Introducción a la Ciencia e Ingeniería de los Materiales; Reverté: Barcelona, España, 1995; ISBN 9788429172539. [Google Scholar]
- Yoshida, H.; Takeuchi, M.; Sato, M.; Zhang, L.; Teshima, T.; Chaskar, M.G. Potassium hexatitanate photocatalysts prepared by a flux method for water splitting. Catal. Today 2014, 232, 158–164. [Google Scholar] [CrossRef]
- Sayama, K.; Arakawa, H. Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts. J. Photochem. Photobiol. A 1994, 77, 243–247. [Google Scholar] [CrossRef]
- Shimura, K.; Kawai, H.; Yoshida, T.; Yoshida, H. Simultaneously photodeposited rhodium metal and oxide nanoparticles promoting photocatalytic hydrogen production. Chem. Commun. 2011, 47, 8958–8960. [Google Scholar]
- Escobedo Bretado, M.A.; González Lozano, M.A.; Collins Martínez, V.; López Ortiz, A.; Meléndez Zaragoza, M.; Lara, R.H.; Moreno Medina, C.U. Synthesis, characterization and photocatalytic evaluation of potassium hexatitanate (K2Ti6O13) fibers. Int. J. Hydrogen Energy 2019. [Google Scholar] [CrossRef]
- Tjong, S.C.; Meng, Y.Z. Microstructural and mechanical characteristics of compatibilized polypropylene hybrid composites containing potassium titanate whisker and liquid crystalline copolyester. Polymer 1999, 40, 7275–7283. [Google Scholar] [CrossRef]
- Wypych, G. Handbook of Fillers, 4th ed.; ChemTec Publishing: Toronto, ON, Canada, 2016; ISBN 9781895198911. [Google Scholar]
- Du, G.H.; Chen, Q.; Han, P.D.; Yu, Y.; Peng, L.-M. Potassium titanates nanowires. Structure, growth and optical properties. Phys. Rev. B 2003, 67, 035323. [Google Scholar] [CrossRef]
- Meng, X.; Wang, D.; Liu, J.; Lin, B.; Fu, Z. Effects of titania different phases on the microstructure and properties of K2Ti6O13 nanowires. Solid State Commun. 2006, 137, 146–149. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Chandela, V.S.; Azam, A. Comparative study of potassium hexatitanate (K2Ti6O13) whiskers prepared by sol–gel and solid state reaction routes. Appl. Surf. Sci. 2012, 258, 7354–7358. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.C.; Zhang, M. Low temperature preparation and optical properties of K2Ti6O13. Mater. Lett. 2012, 79, 136–138. [Google Scholar] [CrossRef]
- Sehati, S.; Entezari, M.H. Ultrasound facilitates the synthesis of potassium hexatitanate, and co-intercalation with PbS–CdS nanoparticles. Ultrason. Sonochem. 2016, 32, 348–356. [Google Scholar] [CrossRef]
- Li, F.; Tian-Ran, W.; Kang, F.; Jing-Feng, L. Thermal stability and oxidation resistance of BiCuSeO based thermoelectric ceramics. J. Alloys Compd. 2014, 614, 394–400. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, J.; Li, X.; Li, W.; Wang, H.; Wang, X. Thermal stability of polymer derived SiBNC ceramics. Ceram. Int. 2009, 35, 2871–2876. [Google Scholar] [CrossRef]
- Dai, C.; Wang, Y.; Gu, Y. Preparation of potassium hexatitanate whiskers by KCl molten salt method. Naihuo Cailiao/Refract. 2013, 47, 24–27. [Google Scholar]
- Li, D.; Hagos, K.; Huang, L.; Lu, X.; Liu, C.; Quian, H. Self-propagating high-temperature synthesis of potassium hexatitanate whiskers. Ceram. Int. 2017, 43, 15505–15509. [Google Scholar] [CrossRef]
- Smart, L.E.; Moore, E.A. Solid State Chemistry an Introduction, 4th ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439847909. [Google Scholar]
- Bao, N.; Feng, Z.; Shen, L.; Lu, X. Calcination syntheses of a series of potassium titanatos and their morphologic evolution. Cryst. Growth Des. 2002, 2, 437–442. [Google Scholar] [CrossRef]
- Lee, J.-K.; Lee, K.-H.; Kim, H. Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method. J. Mater. Sci. 1996, 31, 5493–5498. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Wang, Z.; Wei, N.; Wang, X.; Ma, Y.; Yan, W. Facile synthesis of potassium hexatitanate whiskers by calcination at low temperature. J. Aust. Ceram. Soc. 2019. [Google Scholar] [CrossRef]
- Song, H.; Jiang, H.; Liu, T.; Liu, X.; Meng, G. Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+1 (A = Li, Na and K). Mater. Res. Bull. 2007, 42, 334–344. [Google Scholar] [CrossRef]
- Endo, T.; Nagayama, H.; Sato, T.; Shimada, M. Crystallization of potassium titanate from the amorphous phase. J. Mater. Sci. 1988, 23, 694–698. [Google Scholar] [CrossRef]
- Janes, R.; Knghtly, L.J. Crystallization and phase evolution of potassium titanates from alkoxide derived precipitates. J. Mater. Sci. 2004, 39, 2589–2592. [Google Scholar] [CrossRef]
- Yokohama, M.; Ota, T.; Yamai, I. Preparation of potassium hexatitanate long fibres by the flux evaporation method using Na20-K20-B203 flux. J. Mater. Sci. Lett. 1994, 13, 369–370. [Google Scholar] [CrossRef]
- Levchuk, I.; Rueda Márquez, J.J.; Sillanpää, M. Removal of natural organic matter (NOM) from water by ion exchange – A review. Chemosphere 2017. [Google Scholar] [CrossRef]
- Lee, C.-T.; Um, M.-H.; Kumazawa, H. Synthesis of titanate derivatives using ion-exchange reaction. J. Am. Ceram. Soc. 2000, 83, 1098–1102. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, T.; Zhang, Y. Synthesis of hexatitanate and titanium dioxide fibers by ion-exchange approach. Mater. Res. Bull. 2007, 42, 40–45. [Google Scholar] [CrossRef]
- Danks, A.E.; Hallb, S.R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–113. [Google Scholar] [CrossRef] [Green Version]
- Qian, Q.H.; Zhou, X.F.; Hu, Y.Y.; Liu, C.; Feng, X.; Lu, X.H. Preparation of smooth potassium hexatitanate nanofilms by sol-gel method. J. Matter. Sci. 2007, 42, 8222–8229. [Google Scholar] [CrossRef]
- Kang, S.-O.; Jang, H.-S.; Kim, Y.-I.; Kim, K.-B.; Jung, M.-J. Study on the growth of potassium titanate nanostructures prepared by sol-gel–calcination process. Mater. Lett. 2007, 61, 473–477. [Google Scholar] [CrossRef]
- Seçkin, E.; Kingsley, H. Fiber reinforced composites. Fiber Technol. Fiber-Reinf. Compos. 2017, 51–79. [Google Scholar] [CrossRef]
- Askeland, D.R. Ciencia e Ingeniería de los Materiales, 3rd ed.; International Thomson Editores: Mexico City, Mexico, 1998; ISBN 968-7529-36-9. [Google Scholar]
- Harada, H.; Inoue, Y.; Sadanaga, E. Potassium Hexatitanate Fibers for Use as Reinforcement. U.S. Patent 5,407,754, 18 April 1995. [Google Scholar]
- Ding, D.Y.; Wang, J.N. Interfacial reactions in K2Ti6O13(w)/Al2O3/Al composite. Mater. Sci. Tech. 2001, 17, 833–836. [Google Scholar] [CrossRef]
- Jiang, W.; Tjong, S.C. Thermal stability of polycarbonate composites reinforced with potassium titanate whiskers: Effect of coupling agent addition. Polym. Degrad. Stab. 1999, 66, 241–246. [Google Scholar] [CrossRef]
- Kobayashi, I. Composite Fibers of Potassium Hexatitanate and Titanium Dioxide. European Patent 0684215A1, 24 May 1994. [Google Scholar]
- Shim, J.-P.; Lee, H.-K.; Park, S.-G.; Lee, J.-S. The synthesis of potassium hexatitanate and manufacturing alkaline fuel cell matrix. Synth. Met. 1995, 71, 2261–2262. [Google Scholar] [CrossRef]
- Kyungho, C.; Youngkeun, H. Friction and wear properties of scrap tire/potassium hexatitanate whisker composites. J. Ind. Eng. Chem. 2013, 19, 1234–1240. [Google Scholar] [CrossRef]
- Yamamoto, M.; Oyabu, T.; Morimoto, Y.; Ogami, A.; Kadoya, C.; Nishi, K.I.; Todoroki, M.; Myojo, T.; Tanaka, I. Biopersistence of potassium hexatitanate in inhalation and intratracheal instillation studies. Inhal. Toxicol. 2011, 23, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, G.S.; Sui, G.X.; Meng, H.; Sun, Z.S.; Yang, R. Mechanical properties of potassium titanate whiskers reinforced poly(ether ether ketone) composites using different compounding processes. Compos. Sci. Technol. 2007, 67, 1172–1181. [Google Scholar] [CrossRef]
- Yun, S.; Song, Q.Q.; Zhao, D.M.; Qian, G.M.; Li, X.N.; Li, W. Study on the inorganic–organic surface modification of potassium titanate whisker. Appl. Surf. Sci. 2012, 258, 4444–4448. [Google Scholar] [CrossRef]
- Huaiyuan, W.; Yanji, Z.; Xin, F.; Xiaohua, L. The effect of self-assembly modified potassium titanate whiskers on the friction and wear behaviors of PEEK composites. Wear 2010, 269, 139–144. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, R.; Yu, W. Preparation and characterization of keratin-K2Ti6O13 whisker composite film. Afr. J. Biotechnol. 2010, 9, 2884–2890. [Google Scholar] [CrossRef]
- Hareyama, Y.; Ogawa, H. Printing Sheets. U.S. Patent 6,713,164, 30 March 2004. [Google Scholar]
- Hareyama, Y.; Ogawa, H. Papel de Impresion. Spain Patent 2,224,281, 27 August 1997. [Google Scholar]
- Wang, Y.-Q.; Zhou, B.-L. Behaviour of coatings on reinforcements in some metal matrix composites. Compos. Part. A 1996, 27, 1139–1145. [Google Scholar] [CrossRef]
- Suganuma, K.; Fujita, T.; Suzuki, N.; Niihara, K. Aluminium composites reinforced with a new aluminium borate whisker. J. Mater. Sci. Lett. 1990, 9, 633–635. [Google Scholar] [CrossRef]
- Kobayashi, I.; Aramaki, Y. Composite Fibers of Potassium Hexatitanate and Titanium Dioxide. U.S. Patent 5,383,963, 24 January 1995. [Google Scholar]
- Asano, K.; Yoneda, H.; Agari, Y.; Matsumuro, M.; Higashi, K. Thermal and Mechanical Properties of Aluminum Alloy Composite Reinforced with Potassium Hexatitanate Short Fiber. Mater. Trans. 2015, 56, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Valdes, E.; Gorokhovsii, A.V.; Scherbakova, N.N.; Rodríguez-Galicia, J.L. Formation of composite structure in alumosilicate systems with the introduction of potassium titanates. Glass Ceram. 2010, 67, 169–172. [Google Scholar] [CrossRef]
- Gorokhovsky, A.V.; Escalante-Garcia, J.I.; Sanchez-Valdes, E.; Burmistrov, I.N.; Kuznetsov, D.V. Synthesis and characterization of high-strength ceramic composites in the system of potassium titanate-metallurgical slag. Ceram. Int. 2015, 41, 13294–13303. [Google Scholar] [CrossRef]
- Aguilar-González, M.A.; Gorokhovsky, A.; Aguilar-Elguezabal, A.; Escalante-Garcia, J.I. Síntesis y caracterización de adsorbentes cerámicos basados en polititanatos de potasio y vidrio SiO2-B2O3-R2O-Al2O3. Bol. Soc. Esp. Ceram. V. 2008, 4, 29–34. [Google Scholar] [CrossRef]
- Aguilar-González, M.A.; Gorokhovsky, A.; Aguilar-Elguezabal, A. Removal of lead and nickel from aqueous solutions by SiO2 doped potassium titanate. Mater. Sci. Eng. B 2010, 174, 105–113. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, Y.; Liu, B.; Liu, M. Friction and wear behavior of hydroxyapatite based composite ceramics reinforced with fibers. Mater. Des. 2012, 39, 444–449. [Google Scholar] [CrossRef]
- Long, C.G.; He, L.-P.; Zhong, Z.-H.; Chen, S.G. Studies on the polypropylene composites reinforced by ramier fiber and K2Ti6O13 Whiskers. Res. Lett. Mater. Sci. 2007, 1–4. [Google Scholar] [CrossRef]
- Tjong, S.C.; Meng, Y.Z. Morphology and performance of potassium titanate whisker-reinforced polypropylene composites. J. Appl. Polym. Sci. 1998, 70, 431–439. [Google Scholar] [CrossRef]
- Tjong, S.C.; Meng, Y.Z. Performance of potassium titanate whisker reinforced polyamide-6 composites. Polymer 1998, 39, 5461–5466. [Google Scholar] [CrossRef]
- Yuchun, O.; Feng, Y.; Jin, C. Interfacial interaction and mechanical properties of Nylon 6-Potassium titanate composites prepared by in-situ polymerization. J. Appl. Polym. Sci. 1998, 2317–2322. [Google Scholar] [CrossRef]
- Sudheer, M.; Vishwanathan, K.H.; Raju, K.; Thirumaleshwara, B. Effect of potassium titanate whiskers on the performance of vacuum molded glass/epoxy composites. J. Reinf. Plast. Comp. 2013, 32, 1177–1187. [Google Scholar] [CrossRef]
- Kumar, M.; Satapathy, B.K.; Patnaik, A.; Kolluri, D.K.; Tomar, B.S. Evaluation of Fade-Recovery Performance of Hybrid Friction Composites Based on Ternary Combination of Ceramic-Fibers, Ceramic-Whiskers, and Aramid-Fibers. J. Appl. Polym. Sci. 2012, 124, 3650–3661. [Google Scholar] [CrossRef]
- Xie, G.Y.; Sui, G.X.; Yang, R. Effects of Potassium titanate whiskers and carbón fibers on the wear behavior of polyetheretherketone conmposite under water lubricated condition. Compos. Sci. Technol. 2011, 71, 828–835. [Google Scholar] [CrossRef]
- Feng, X.; Diao, X.; Shi, Y.; Wang, H.; Sun, S.; Lu, X. A study on the friction and wear behavior of polytetrafluoroethylene filled with potassium titanate whiskers. Wear 2006, 261, 1208–1212. [Google Scholar] [CrossRef]
- Feng, X.; Wang, H.; Shi, Y.; Chen, D.; Lu, X. The effects of size and content of potassium titanate whiskers on the properties of PTW/PTFE composites. Mater. Sci. Engin. A 2007, 448, 253–258. [Google Scholar] [CrossRef]
- Yu, D.; Wu, J.; Zhou, L.; Xie, D.; Wu, S. The dielectric and mechanical properties of a potassium-titanate-whisker-reinforced PP/PA blend. Compos. Sci. Technol. 2000, 60, 499–508. [Google Scholar] [CrossRef]
- Yahya, R.B.; Hayashi, H.; Nagase, T.; Ebina, T.; Onodera, Y.; Saitoh, N. Hydrothermal synthesis of potassium hexatitanates under subcritical and supercritical water conditions and its application in photocatalysis. Chem. Mater. 2001, 13, 842–847. [Google Scholar] [CrossRef]
- Guan, G.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A. Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl. Catal. A: Gen. 2003, 249, 11–18. [Google Scholar] [CrossRef]
- Liu, Y.; Tsuru, K.; Hayakawa, S.; Osaka, A. Potassium titanate nanorods array grown on titanium substrates and their in vitro bioactivity. J. Ceram. Soc. Jpn. 2004, 112, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lin, Q.; Chen, J.; Lan, X.; Lu, C.; Li, D.; Xu, Z. In Vitro Bioactivity of Potassium Titanate Whiskers. Adv. Mater. Res. 2008, 47–50, 1351–1354. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.J.; Qi, Y.M.; Zhao, L.C.; Cui, C.X. Behavior of potassium titanate whisker in simulated body fluid. Mater. Lett. 2014, 135, 139–142. [Google Scholar] [CrossRef]
- Villalpando-Reyna, A.; Cortés-Hernádez, D.A.; Gorokhovsky, A.; Almanza-Robles, J.M.; Escobedo-Bocardo, J.C. In vitro bioactivity assessment and mechanical properties of novel calcium titanate/borosilicate glass composites. Ceram. Int. 2011, 37, 1625–1629. [Google Scholar] [CrossRef]
- Gonzáles-Lozano, M.A.; Gorokhovsky, A.; Escalante-García, J.I. Vitrification and crystallization in the system of K2O–B2O3–TiO2. J. Non-Cryst. Solids 2009, 355, 114–119. [Google Scholar] [CrossRef]
Parameters | ||||
---|---|---|---|---|
a (Å) | b (Å) | c (Å) | β (°) | |
PDF 40-0403 | 15.593 | 3.796 | 9.108 | 99.78 |
PDF 74-0275 | 15.582 | 3.82 | 9.112 | 99.764 |
Calculated [25] | 16.1529 | 3.7801 | 9.3388 | 101.1878 |
Property | Value |
---|---|
Density | 3.2–3.3 g/cm3 |
Melting point | 1370 °C |
Softening point | 1200 °C |
Mohs hardness | 4 |
pH of water slurry | 7–8 |
Thermal expansion coefficient | 6.8 × 10−6 K−1 |
Specific heat | 920 J/kgK |
Tensile strength | 7 Gpa |
Tensile modulus | 280 Gpa |
Synthesis Method | Band-Gap (eV) | Reference |
---|---|---|
Hydrothermal synthesis | 3.45 | Du G.H. et al. [40] |
Hydrothermal synthesis | 3.3 | Meng X. et al. [41] |
Solid-state reaction | 3.52 | Yoshida H. et al. [34] |
Solid-state reaction | 3.06 | Siddiqui M.A. et al. [42] |
Flux growth | 3.3 | Ponce-Peña P. et al. [31] |
Sol-gel synthesis | 3.48 | Siddiqui M.A. et al. [42] |
Low-temperature synthesis | 3.47 | Li J. et al. [43] |
Sonochemical method | 3.42 | Sehati S. and Entezari M.H. [44] |
Synthesis Method | Advantages | Disadvantages |
---|---|---|
Calcination | Facile and economic synthesis. Suitable for large-scale production. | Require high temperatures. Reagents finely grounded. Difficult particle size control. |
Hydrothermal reaction | Low temperature synthesis. Easy morphology and size (micro/nanometric) particle control. Product with high purity | Long synthesis time. PHT structure can be amorphized by supercritical water. Is not suitable for mass production. |
Flux growth | Can be use a great variety of fluxes. Size (micrometric) and morphology can be controlled. | Fluxes can corrode the crucibles. Many stages are required. |
Ionic exchange | Low temperature synthesis. Easy morphology and size (micro/nanometric) particle control. | Many stages are required. Long synthesis time. Is not suitable for mass production. |
Sol-gel | Low temperature synthesis. Size (micrometric) and morphology can be controlled. Product with high purity. | Expensive starting materials Many stages are required. |
Polymeric Matrix | K2Ti6O13 Content (wt.%) | Others Reinforcing Agents Used | Used Coupling Agent | Properties | Composite Application | Processing Method | Reference |
---|---|---|---|---|---|---|---|
PP | 10 | Ramier Fiber | Silane | Tensile strength (30 Mpa). Bending Strength (63.5 Mpa). Compressive strength (51.5 Mpa). Impact strength (8.6 KJ/m) | Automotive and aircraft | Extrude molded | Long C.-G. [87] |
PP | 5–35 | Tetrabutyl orthotitanate | 15% K2Ti6O13 composite Tensile strength (32.42 Mpa). Young´s module (2.833 Gpa). Longitudinal impact strength (32 J/m). Transverse impact strength (30.8 J/m) | Load bearing applications | Twin-screw extruded follow by injection molded | Tjong S.C. [88] | |
PA-6 | 5–35 | - | Tetrabutyl orthotitanate | 25% K2Ti6O13 composite Tensile strength (69 Mpa). Young´s module (2.65 Gpa). Longitudinal impact strength (59.5 J/m). Transverse impact strength (45 J/m) | Automobile parts | Injection molded | Tjong S.C. [89] |
PA-6 | 5–15 | - | Propyltrimethoxy-silane | 15% K2Ti6O13 composite Tensile strength (86.03 Mpa). Tensile Modulus (31.96 Gpa). Impact strength (7.97 ln-lbs) | - | In situ polymerization | Yuchun et al. [90] |
ER | 0–7.5 | Glass fibers | - | 7.5% K2Ti6O13 composite Density (1.69 g/cm3). Rockwell M Hardness (99). Tensile strength (247 Mpa). Flexural strength (274 Gpa). Impact strength (1.86 J/mm) FC range (0.430-0.451) Specific wear rate (1X10-5 mm3/Nm | - | Vacuum molded | Sudheer et al. [91] |
PR | 10–15 | Barite (BaSO4)GraphiteAlumino-silicate fibersAramid fibers | - | 15% K2Ti6O13 Density 2.02 Tensile strength (9.4 Mpa). Flexural strength (44.71 Mpa) Impact strength (0.2 KJ/m2) Elongation (1.31%) | Braking applications | Mixing follow by compression molding | Kumar et al. [92] |
PEEK | 10–30 | - | - | 30% K2Ti6O13 compounded rheometer composite Tensile strength (125 Mpa). | Chemical, mechanical, aeronautic, electronic and nuclear industries | Twin-screw extruder or Torque rheometer | Zhuang et al [72] |
PEEK | 15 | Carbon fibers | - | 15% K2Ti6O13 composites Water absorption (0.71%), FC (0.01) Wear rate (9.2 × 10−9 mm3/Nm, at 15Mpa) | Chemical, mechanical, aeronautic, electronic and nuclear industries | Injection molded | Xie et al. [93] |
PTFE | 0–40 | - | Aminosilane | 20% K2Ti6O13 composites FC (0.127) Wear rate (8.38 × 10−10 cm3/Nm) at 100N and 1.4 m/s) Heat of fusion (44.487 J/g) | Bearing and sealing materials | Compression molding | Feng et al. [94,95] |
PTFE/PEEK | 0–30 | - | n-octodecyl-triclorosilane | 10% K2Ti6O13 composites FC (0.125) Wear rate (3.37 × 10−5 m3/Nm) at 100N and 1.4 m/s Tensile strength (82.8 Mpa), Flexural strength (113.1 Mpa), Impact strength (15.9 KJ/m2) | Chemical, mechanical, aeronautic, electronic and nuclear industries | High temperature compression moulding | Huaiyuan et al. [74] |
PC | 5–25 | - | Methyl-trimethoxy silane or Tetrabutyl orthotitanate | 10% K2Ti6O13 composites Tensile strength (40Mpa) | Engineering thermoplastic | single-screw extruded follow by injection moulded | Jiang and Tjong [67] |
PP/LCP | 0–35 | - | Tetrabutyl orthotitanate | 35% K2Ti6O13 composites Tensile strength (45 Mpa) Young´s module (6 Gpa), Longitudinal impact strength (4.2 KJ/m2), Transverse impact strength (2.7 KJ/m2) | - | Extruded follow by injection moulded | Tjong and Meng [38] |
PP/PA-6 | 0–40 (phr) | γ-methacryloxy-propyltrimethoxy silane and γ-aminopropyl-triethoxy silane | 20 phr K2Ti6O13 composites εr (3.43) Tan δ (5.7 × 10−3) Tensile strength (75 Mpa) Impact strength (4.4 KJ/m2) | High performance insulating materials for electric applications | Torque rheometer | Yu et al. [96] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce-Peña, P.; Poisot, M.; Rodríguez-Pulido, A.; González-Lozano, M.A. Crystalline Structure, Synthesis, Properties and Applications of Potassium Hexatitanate: A Review. Materials 2019, 12, 4132. https://doi.org/10.3390/ma12244132
Ponce-Peña P, Poisot M, Rodríguez-Pulido A, González-Lozano MA. Crystalline Structure, Synthesis, Properties and Applications of Potassium Hexatitanate: A Review. Materials. 2019; 12(24):4132. https://doi.org/10.3390/ma12244132
Chicago/Turabian StylePonce-Peña, Patricia, Martha Poisot, Alicia Rodríguez-Pulido, and María Azucena González-Lozano. 2019. "Crystalline Structure, Synthesis, Properties and Applications of Potassium Hexatitanate: A Review" Materials 12, no. 24: 4132. https://doi.org/10.3390/ma12244132
APA StylePonce-Peña, P., Poisot, M., Rodríguez-Pulido, A., & González-Lozano, M. A. (2019). Crystalline Structure, Synthesis, Properties and Applications of Potassium Hexatitanate: A Review. Materials, 12(24), 4132. https://doi.org/10.3390/ma12244132