Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. General
2.2. Procedures and Analysis Data
2.2.1. Synthesis of Caranyl Amines Hydrochlorides 14, 15
2.2.2. Synthesis of Benzisoselenazol-3(2H)-Ones 30-37
2.3. Antioxidant Activity Assay
2.4. MTT Viability Assay
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Orian, L.; Toppo, S. Organochalcogen peroxidase mimetics as potential drugs: A long story of a promise still unfulfilled. Free Radic. Biol. Med. 2014, 66, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [Google Scholar] [CrossRef] [PubMed]
- Pacuła, A.J.; Mangiavacchi, F.; Sancineto, L.; Lenardao, E.J.; Ścianowski, J.; Santi, C. An Update on “Selenium Containing Compounds from Poison to Drug Candidates: A Review on the GPx-like Activity”. Curr. Chem. Biol. 2015, 9, 97–112. [Google Scholar] [CrossRef]
- Singh, K.; Shakya, P.; Kumar, A.; Alok, S.; Kamal, K.; Singh, S.P. Stereochemistry and its role in drug design. IJPSR 2014, 5, 4644–4659. [Google Scholar]
- McConathy, J.; Owens, M.J. Stereochemistry in Drug Action. Prim. Care Companion J. Clin. Psychiatry 2003, 5, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.N.; He, H.; Pham-Huy, C. Chiral Drugs: An Overview. Int. J. Biomed. Sci. 2006, 2, 85–100. [Google Scholar] [PubMed]
- Elsherbini, M.; Hamama, W.S.; Zoorob, H.H.; Bhowmick, D.; Mugesh, G.; Wirth, T. Synthesis and Antioxidant Activities of Novel Chiral Ebselen Analogues. Heteroat. Chem. 2014, 25, 320–325. [Google Scholar] [CrossRef]
- Młochowski, J.; Gryglewski, R.J.; Inglot, A.D.; Jakubowski, A.; Juchniewicz, L.; Kloc, K. Synthesis and properties of 2-carboxyalkyl-1, 2-benzisoselenazol-3 (2H)-ones and related organoselenium compounds as nitric oxide synthase inhibitors and cytokine inducers. Liebigs Ann. 1996, 11, 1751–1755. [Google Scholar] [CrossRef]
- Satheeshkumar, K.; Mugesh, G. Synthesis and Antioxidant Activity of Peptide-Based Ebselen Analogues. Chem. Eur. J. 2011, 17, 4849–4857. [Google Scholar] [CrossRef] [PubMed]
- Bijan, K.; Zhang, Z.; Xu, B.; Jie, S.; Chen, B.; Wan, S.; Jiang, T.; Alaoui-Jamali, M.A. Synthesis and biological activity of novel organoselenium derivatives targeting multiple kinases and capable of inhibiting cancer progression to metastases. Eur. J. Med. Chem. 2012, 48, 143–152. [Google Scholar]
- Zielińska-Błajet, M.; Boratyński, P.J.; Palus, J.; Skarżewski, J. Chiral benzisoselenazolones: Conformational analysis based on experimental and DFT calculated 77Se NMR. Tetrahedron 2013, 69, 10223–10229. [Google Scholar] [CrossRef]
- Balkrishna, J.S.; Kumar, S.; Azad, G.K.; Bhakuni, B.S.; Panini, P.; Ahalawat, N.; Tomar, R.S.; Detty, M.R.; Kumar, S. An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org. Biomol. Chem. 2014, 12, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Pacuła, A.J.; Kaczor, K.B.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Wojtczak, A.; Ścianowski, J. New Chiral Ebselen Analogues with Antioxidant and Cytotoxic Potential. Molecules 2017, 22, 492. [Google Scholar] [CrossRef]
- Parnham, J.M.; Sies, H. The early research and development of ebselen. Biochem. Pharm. 2013, 86, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A Water-Soluble Cyclic Selenide with Enhanced Glutathione Peroxidase-Like Catalytic Activities. Eur. J. Org. Chem. 2010, 3, 440–444. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Zhang, F.; Gong, Y. Synthesis of C1-Symmetric Chiral Secondary Diamines and Their Applications in the Asymmetric Copper(II)-Catalyzed Henry (Nitroaldol) Reactions. J. Org. Chem. 2011, 76, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.V.; Rangaishenvi, M.V.; Singaram, B.; Goralski, C.T.; Brown, H.C. Organoboranes for Synthesis. 16. A Convenient Synthesis of Enantiomerically Pure Isopinocampheylamine, a Chiral Derivatizing Agent for Gas Chromatographic Analysis of Optically Active Carboxylic Acids. J. Org. Chem. 1996, 61, 341–345. [Google Scholar] [CrossRef]
- Brown, H.C.; Malhotra, S.V.; Ramachandran, P.V. Organoboranes for synthesis 17. Generality of hydroboration-amination for the conversion of terpenes into enantiomerically pure terpenylamines. Their utility for gas chromatographic analysis of chiral carboxylic acids. Tetrahedron Asymmetry 1996, 7, 3527–3534. [Google Scholar] [CrossRef]
- Pacuła, A.J.; Kaczor, K.B.; Wojtowicz, A.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Ścianowski, J. New glutathione peroxidase mimetics—Insights into antioxidant and cytotoxic activity. Bioorg. Med. Chem. 2017, 25, 126–131. [Google Scholar]
Remaining DTTred [%] | |||||
---|---|---|---|---|---|
Catalyst [0.1 equiv.] | 3 min | 5 min | 15 min | 30 min | 60 min |
Benzisoselenazolones | |||||
22 | 91 | 85 | 75 | 63 | 49 |
24 | 80 | 77 | 74 | 70 | 67 |
25 | 71 | 39 | 5 | 0 | 0 |
27 | 74 | 61 | 28 | 6 | 0 |
28 | 92 | 89 | 83 | 74 | 58 |
29 | 69 | 61 | 43 | 40 | 39 |
Ebselen | 84 | 75 | 64 | 58 | 52 |
Compound | Structure | IC50 [µM] | |
---|---|---|---|
MCF-7 | HL-60 | ||
22 | 12.4 ± 0.4 | 12.4 ± 0.9 | |
23 | 85.5 ± 4.0 | 61.3 ± 3.2 | |
24 | 11.9 ± 0.2 | 62.1 ± 2.0 | |
25 | 19.9 ± 0.4 | 7.1 ± 0.4 | |
26 | 13.3 ± 1.1 | 20.6 ± 1.0 | |
27 | 45.3 ± 2.1 | 250 ± 24.7 | |
28 | 24.3 ± 2.4 | 203 ± 2.0 | |
29 | 45.2 ± 2.1 | 210 ± 14.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obieziurska, M.; Pacuła, A.J.; Długosz-Pokorska, A.; Krzemiński, M.; Janecka, A.; Ścianowski, J. Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds. Materials 2019, 12, 3579. https://doi.org/10.3390/ma12213579
Obieziurska M, Pacuła AJ, Długosz-Pokorska A, Krzemiński M, Janecka A, Ścianowski J. Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds. Materials. 2019; 12(21):3579. https://doi.org/10.3390/ma12213579
Chicago/Turabian StyleObieziurska, Magdalena, Agata J. Pacuła, Angelika Długosz-Pokorska, Marek Krzemiński, Anna Janecka, and Jacek Ścianowski. 2019. "Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds" Materials 12, no. 21: 3579. https://doi.org/10.3390/ma12213579
APA StyleObieziurska, M., Pacuła, A. J., Długosz-Pokorska, A., Krzemiński, M., Janecka, A., & Ścianowski, J. (2019). Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds. Materials, 12(21), 3579. https://doi.org/10.3390/ma12213579