Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Procedures and Analysis Data
2.2.1. Synthesis of Caranyl Amines Hydrochlorides 14, 15
2.2.2. Synthesis of Benzisoselenazol-3(2H)-Ones 30-37
2.3. Antioxidant Activity Assay
2.4. MTT Viability Assay
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Orian, L.; Toppo, S. Organochalcogen peroxidase mimetics as potential drugs: A long story of a promise still unfulfilled. Free Radic. Biol. Med. 2014, 66, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [Google Scholar] [CrossRef] [PubMed]
- Pacuła, A.J.; Mangiavacchi, F.; Sancineto, L.; Lenardao, E.J.; Ścianowski, J.; Santi, C. An Update on “Selenium Containing Compounds from Poison to Drug Candidates: A Review on the GPx-like Activity”. Curr. Chem. Biol. 2015, 9, 97–112. [Google Scholar] [CrossRef]
- Singh, K.; Shakya, P.; Kumar, A.; Alok, S.; Kamal, K.; Singh, S.P. Stereochemistry and its role in drug design. IJPSR 2014, 5, 4644–4659. [Google Scholar]
- McConathy, J.; Owens, M.J. Stereochemistry in Drug Action. Prim. Care Companion J. Clin. Psychiatry 2003, 5, 70–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, A.N.; He, H.; Pham-Huy, C. Chiral Drugs: An Overview. Int. J. Biomed. Sci. 2006, 2, 85–100. [Google Scholar] [PubMed]
- Elsherbini, M.; Hamama, W.S.; Zoorob, H.H.; Bhowmick, D.; Mugesh, G.; Wirth, T. Synthesis and Antioxidant Activities of Novel Chiral Ebselen Analogues. Heteroat. Chem. 2014, 25, 320–325. [Google Scholar] [CrossRef]
- Młochowski, J.; Gryglewski, R.J.; Inglot, A.D.; Jakubowski, A.; Juchniewicz, L.; Kloc, K. Synthesis and properties of 2-carboxyalkyl-1, 2-benzisoselenazol-3 (2H)-ones and related organoselenium compounds as nitric oxide synthase inhibitors and cytokine inducers. Liebigs Ann. 1996, 11, 1751–1755. [Google Scholar] [CrossRef]
- Satheeshkumar, K.; Mugesh, G. Synthesis and Antioxidant Activity of Peptide-Based Ebselen Analogues. Chem. Eur. J. 2011, 17, 4849–4857. [Google Scholar] [CrossRef] [PubMed]
- Bijan, K.; Zhang, Z.; Xu, B.; Jie, S.; Chen, B.; Wan, S.; Jiang, T.; Alaoui-Jamali, M.A. Synthesis and biological activity of novel organoselenium derivatives targeting multiple kinases and capable of inhibiting cancer progression to metastases. Eur. J. Med. Chem. 2012, 48, 143–152. [Google Scholar]
- Zielińska-Błajet, M.; Boratyński, P.J.; Palus, J.; Skarżewski, J. Chiral benzisoselenazolones: Conformational analysis based on experimental and DFT calculated 77Se NMR. Tetrahedron 2013, 69, 10223–10229. [Google Scholar] [CrossRef]
- Balkrishna, J.S.; Kumar, S.; Azad, G.K.; Bhakuni, B.S.; Panini, P.; Ahalawat, N.; Tomar, R.S.; Detty, M.R.; Kumar, S. An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org. Biomol. Chem. 2014, 12, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Pacuła, A.J.; Kaczor, K.B.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Wojtczak, A.; Ścianowski, J. New Chiral Ebselen Analogues with Antioxidant and Cytotoxic Potential. Molecules 2017, 22, 492. [Google Scholar] [CrossRef]
- Parnham, J.M.; Sies, H. The early research and development of ebselen. Biochem. Pharm. 2013, 86, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A Water-Soluble Cyclic Selenide with Enhanced Glutathione Peroxidase-Like Catalytic Activities. Eur. J. Org. Chem. 2010, 3, 440–444. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Zhang, F.; Gong, Y. Synthesis of C1-Symmetric Chiral Secondary Diamines and Their Applications in the Asymmetric Copper(II)-Catalyzed Henry (Nitroaldol) Reactions. J. Org. Chem. 2011, 76, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.V.; Rangaishenvi, M.V.; Singaram, B.; Goralski, C.T.; Brown, H.C. Organoboranes for Synthesis. 16. A Convenient Synthesis of Enantiomerically Pure Isopinocampheylamine, a Chiral Derivatizing Agent for Gas Chromatographic Analysis of Optically Active Carboxylic Acids. J. Org. Chem. 1996, 61, 341–345. [Google Scholar] [CrossRef]
- Brown, H.C.; Malhotra, S.V.; Ramachandran, P.V. Organoboranes for synthesis 17. Generality of hydroboration-amination for the conversion of terpenes into enantiomerically pure terpenylamines. Their utility for gas chromatographic analysis of chiral carboxylic acids. Tetrahedron Asymmetry 1996, 7, 3527–3534. [Google Scholar] [CrossRef]
- Pacuła, A.J.; Kaczor, K.B.; Wojtowicz, A.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Ścianowski, J. New glutathione peroxidase mimetics—Insights into antioxidant and cytotoxic activity. Bioorg. Med. Chem. 2017, 25, 126–131. [Google Scholar]
Remaining DTTred [%] | |||||
---|---|---|---|---|---|
Catalyst [0.1 equiv.] | 3 min | 5 min | 15 min | 30 min | 60 min |
Benzisoselenazolones | |||||
22 | 91 | 85 | 75 | 63 | 49 |
24 | 80 | 77 | 74 | 70 | 67 |
25 | 71 | 39 | 5 | 0 | 0 |
27 | 74 | 61 | 28 | 6 | 0 |
28 | 92 | 89 | 83 | 74 | 58 |
29 | 69 | 61 | 43 | 40 | 39 |
Ebselen | 84 | 75 | 64 | 58 | 52 |
Compound | Structure | IC50 [µM] | |
---|---|---|---|
MCF-7 | HL-60 | ||
22 | | 12.4 ± 0.4 | 12.4 ± 0.9 |
23 | | 85.5 ± 4.0 | 61.3 ± 3.2 |
24 | | 11.9 ± 0.2 | 62.1 ± 2.0 |
25 | | 19.9 ± 0.4 | 7.1 ± 0.4 |
26 | | 13.3 ± 1.1 | 20.6 ± 1.0 |
27 | | 45.3 ± 2.1 | 250 ± 24.7 |
28 | | 24.3 ± 2.4 | 203 ± 2.0 |
29 | | 45.2 ± 2.1 | 210 ± 14.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obieziurska, M.; Pacuła, A.J.; Długosz-Pokorska, A.; Krzemiński, M.; Janecka, A.; Ścianowski, J. Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds. Materials 2019, 12, 3579. https://doi.org/10.3390/ma12213579
Obieziurska M, Pacuła AJ, Długosz-Pokorska A, Krzemiński M, Janecka A, Ścianowski J. Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds. Materials. 2019; 12(21):3579. https://doi.org/10.3390/ma12213579
Chicago/Turabian StyleObieziurska, Magdalena, Agata J. Pacuła, Angelika Długosz-Pokorska, Marek Krzemiński, Anna Janecka, and Jacek Ścianowski. 2019. "Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds" Materials 12, no. 21: 3579. https://doi.org/10.3390/ma12213579
APA StyleObieziurska, M., Pacuła, A. J., Długosz-Pokorska, A., Krzemiński, M., Janecka, A., & Ścianowski, J. (2019). Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds. Materials, 12(21), 3579. https://doi.org/10.3390/ma12213579