Thermoelectric Properties of n-Type Molybdenum Disulfide (MoS2) Thin Film by Using a Simple Measurement Method
Abstract
:1. Introduction
1.1. Seebeck Princple
1.2. Thermal Conductivity
2. Methods
2.1. Seebeck Setup Design and Construction
2.2. Thermal Conductivity Measurement Setup
2.3. Thickness Measurement
2.4. XRD Measurement
3. Results and Discussion
3.1. Sample Preparation and X-ray Diffraction (XRD) Characterization
3.2. Measurement of the Seebeck Coefficient for Thin Film MoS2
3.3. Measurement of Thermal Conductivity
3.4. Calculation of ZT for MoS2
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mori, T.; Priya, S. Materials for energy harvesting: At the forefront of a new wave. MRS Bull. 2018, 43, 176–180. [Google Scholar] [CrossRef] [Green Version]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Tritt, T.M.; Subramanian, M.A. Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View. MRS Bull. 2006, 31, 188–198. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Forsberg, V.; Zhang, R.; Bäckström, J.; Dahlström, C.; Andres, B.; Norgren, M.; Andersson, M.; Hummelgård, M.; Olin, H. Exfoliated MoS2 in Water without Additives. PLoS ONE 2016, 11, e0154522. [Google Scholar] [CrossRef] [PubMed]
- Hazan, E.; Madar, N.; Parag, M.; Casian, V.; Ben-Yehuda, O.; Gelbstein, Y. Effective Electronic Mechanisms for Optimizing the Thermoelectric Properties of GeTe-Rich Alloys. Adv. Electron. Mater. 2015, 1, 1500228. [Google Scholar] [CrossRef]
- Nieroda, P.; Leszczynski, J.; Kolezynski, A. Bismuth doped Mg2Si with improved homogeneity: Synthesis, characterization and optimization of thermoelectric properties. J. Phys. Chem. Solids 2017, 103, 147–159. [Google Scholar] [CrossRef]
- Graf, T.; Klaer, P.; Barth, J.; Balke, B.; Elmers, H.J.; Felser, C. Phase separation in the quaternary Heusler compound CoTi(1−x)MnxSb—A reduction in the thermal conductivity for thermoelectric applications. Scr. Mater. 2010, 63, 1216–1219. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Sun, X.; Zhang, Z.; Cronin, S.B.; Koga, T. Low-dimensional thermoelectric materials. Phys. Solid State 1999, 41, 679–682. [Google Scholar] [CrossRef]
- Hicks, L.D.; Harman, T.C.; Sun, X.; Dresselhaus, M.S. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. In Proceedings of the Fifteenth International Conference on Thermoelectrics. Proceedings ICT ’96, Pasadena, CA, USA, 26–29 March 1996; pp. 450–453. [Google Scholar]
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-Y.; Lim, M.-H.; Jeon, J.; Yoo, G.; Kang, D.-H.; Jang, S.K.; Jeon, M.H.; Lee, Y.; Cho, J.H.; Yeom, G.Y.; et al. Wide-Range Controllable n-Doping of Molybdenum Disulfide (MoS2) through Thermal and Optical Activation. ACS Nano 2015, 9, 2368–2376. [Google Scholar] [CrossRef]
- Andriotis, A.N.; Menon, M. Tunable magnetic properties of transition metal doped MoS2. Phys. Rev. B 2014, 90, 125304. [Google Scholar] [CrossRef]
- Ma, D.; Ju, W.; Li, T.; Zhang, X.; He, C.; Ma, B.; Tang, Y.; Lu, Z.; Yang, Z. Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals. Appl. Surf. Sci. 2016, 364, 181–189. [Google Scholar] [CrossRef]
- Wu, J.; Schmidt, H.; Amara, K.K.; Xu, X.; Eda, G.; Özyilmaz, B. Large Thermoelectricity via Variable Range Hopping in Chemical Vapor Deposition Grown Single-Layer MoS2. Nano Lett. 2014, 14, 2730–2734. [Google Scholar] [CrossRef]
- Hippalgaonkar, K.; Wang, Y.; Ye, Y.; Qiu, D.Y.; Zhu, H.; Wang, Y.; Moore, J.; Louie, S.G.; Zhang, X. High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B 2017, 95, 115407. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Skuza, J.R.; Park, Y.; King, G.C.; Choi, S.H.; Nagavalli, A. System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics. NASA Langley Res. Center Tech. Memorandum, Hampton, Virginia, Tech. Rep. NASA/TM-2012-217791 2012. [Google Scholar]
- Zhao, D.; Qian, X.; Gu, X.; Jajja, S.A.; Yang, R. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. J. Electron. Packag. 2016, 138, 40802–40819. [Google Scholar] [CrossRef]
- Sundqvist, B. Thermal diffusivity measurements by Ångström’s method in a fluid environment. Int. J. Thermophys. 1991, 12, 191–206. [Google Scholar] [CrossRef]
- Bosanquet, C.H.; Aris, R. On the application of Angström’s method of measuring thermal conductivity. Br. J. Appl. Phys. 1954, 5, 252–255. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Ju, Y. Design and construction of a guarded hot plate apparatus operating down to liquid nitrogen temperature. Rev. Sci. Instrum. 2012, 83, 075106. [Google Scholar] [CrossRef] [PubMed]
- Rull-Bravo, M.; Moure, A.; Fernández, J.F.; Martín-González, M. Skutterudites as thermoelectric materials: Revisited. RSC Adv. 2015, 5, 41653–41667. [Google Scholar] [CrossRef]
- ICDD. Powder Difraction File 2: International Centre for Diffraction Data; ICDD: Newtown Square, PA, USA, 2014. [Google Scholar]
- Messerschmidt, A.; Pflugrath, J.W. Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr. 1987, 20, 306–315. [Google Scholar] [CrossRef]
- Wilson, J.A.; Yoffe, A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Liu, J.; Choi, G.-M.; Cahill, D.G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 2014, 116, 233107. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, S.; Forsberg, V.; Mattsson, C.G.; Thungström, G. Thermoelectric Properties of n-Type Molybdenum Disulfide (MoS2) Thin Film by Using a Simple Measurement Method. Materials 2019, 12, 3521. https://doi.org/10.3390/ma12213521
Ashraf S, Forsberg V, Mattsson CG, Thungström G. Thermoelectric Properties of n-Type Molybdenum Disulfide (MoS2) Thin Film by Using a Simple Measurement Method. Materials. 2019; 12(21):3521. https://doi.org/10.3390/ma12213521
Chicago/Turabian StyleAshraf, Shakeel, Viviane Forsberg, Claes G. Mattsson, and Göran Thungström. 2019. "Thermoelectric Properties of n-Type Molybdenum Disulfide (MoS2) Thin Film by Using a Simple Measurement Method" Materials 12, no. 21: 3521. https://doi.org/10.3390/ma12213521
APA StyleAshraf, S., Forsberg, V., Mattsson, C. G., & Thungström, G. (2019). Thermoelectric Properties of n-Type Molybdenum Disulfide (MoS2) Thin Film by Using a Simple Measurement Method. Materials, 12(21), 3521. https://doi.org/10.3390/ma12213521