Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. The Migration and Aggregation of He in the Matrix
3.2. Point Defects in Fe Matrix and SWCNT/Fe Composite
3.3. The Effect of Double-Walled Carbon Nanotube (DWCNT)/Fe Composite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kesternich, W. A possible solution of the problem of helium embrittlement. J. Nucl. Mater. 1985, 127, 153–160. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Dudarev, S.L.; Nguyenmanh, D.; Zheng, S.; Packer, L.W.; Sublet, J.C. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials. J. Nucl. Mater. 2013, 442, 755–760. [Google Scholar] [CrossRef]
- Alimov, V.K.; Hatano, Y.; Sugiyama, K.; Balden, M.; Höschen, T.; Oyaidzu, M.; Roth, J.; Dorner, J.; Fußeder, M.; Yamanishi, T. Surface modification and deuterium retention in reduced activation ferritic martensitic steels exposed to low-energy, high flux D plasma and D2 gas. Phys. Scr. 2014, T159, 014049. [Google Scholar] [CrossRef]
- Pang, L.X.; Sun, K.N.; Ren, S.; Sun, C.; Fan, R.H.; Lu, Z.H. Fabrication and microstructure of Fe 3Al matrix composite reinforced by carbon nanotube. Mater. Sci. Eng. A 2007, 447, 146–149. [Google Scholar] [CrossRef]
- Zhernenkov, M.; Gill, S.; Stanic, V.; Dimasi, E.; Kisslinger, K.; Baldwin, J.K.; Misra, A.; Demkowicz, M.J.; Ecker, L. Design of radiation resistant metallic multilayers for advanced nuclear systems. Appl. Phys. Lett. 2014, 104, 25–42. [Google Scholar] [CrossRef]
- Yamashita, S.; Akasaka, N.; Ukai, S.; Ohnuki, S. Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature. J. Nucl. Mater. 2007, 367, 202–207. [Google Scholar] [CrossRef]
- Shen, T.D.; Feng, S.; Tang, M.; Valdez, J.A.; Wang, Y.; Sickafus, K.E. Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 2007, 90, 749–763. [Google Scholar] [CrossRef]
- Hong, M.; Ren, F.; Zhang, H.; Xiao, X.; Yang, B.; Tian, C.; Fu, D.; Wang, Y.; Jiang, C. Enhanced radiation tolerance in nitride multilayered nanofilms with small period-thicknesses. Appl. Phys. Lett. 2012, 101, 153117. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.W.; Peng, Q. Tuning the slide-roll motion mode of carbon nanotubes via hydroxyl groups. Nanoscale Res. Lett. 2018, 13, 138. [Google Scholar] [CrossRef]
- Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube transistors. Nature 2003, 424, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller, J. Carbon nanotubes for high-performance electronics—Progress and prospect. Proc. IEEE 2008, 96, 201–211. [Google Scholar] [CrossRef]
- Ebbesen, T.W. Synthesis and characterization of carbon nanotubes. In Physics and Chemistry of the Fullerenes. NATO ASI Series (Series C: Mathematical and Physical Sciences); Springer: Dordrecht, Netherlands, 1994. [Google Scholar]
- Lee, Y.H.; Kim, S.G.; Tománek, D. Catalytic growth of single-wall carbon nanotubes: An ab initio study. Phys. Rev. Lett. 1997, 78, 2393–2396. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- He, C.; Zhao, N.Q.; Shi, C.; Du, X.W.; Li, J.; Li, H.; Cui, Q. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv. Mater. 2007, 19, 1128–1132. [Google Scholar] [CrossRef]
- Li, S.; Sun, B.; Imai, H.; Mimoto, T.; Kondoh, K. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. Part A-Appl. Sci. Manuf. 2013, 48, 57–66. [Google Scholar] [CrossRef]
- Mindivan, H.; Efe, A.; Kosatepe, A.H.; Kayali, E.S. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Appl. Surf. Sci. 2014, 318, 234–243. [Google Scholar] [CrossRef]
- Kang, P.S.; Di, C.; Kushima, A.; Li, M.; Kim, S.; Yang, Y.; Wang, Z.; Park, J.G.; Lee, Y.H.; Gonzalez, R.I.; et al. Dispersion of carbon nanotubes in aluminum improves radiation resistance. Nano Energy 2016, 22, 319–327. [Google Scholar]
- González, R.I.; Valencia, F.; Mella, J.; Duin, A.C.T.; Kang, P.S.; Li, J.; Kiwi, M.; Bringa, E.M. Metal-nanotube composites as radiation resistant materials. Appl. Phys. Lett. 2016, 109, 033108. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.; Cao, J.; Yang, P.; Peng, Q. Interaction of Edge Dislocations with Graphene Nanosheets in Graphene/Fe Composites. Crystals 2018, 8, 160. [Google Scholar] [CrossRef]
- Peng, Q.; Liang, C.; Ji, W.; De, S. A Theoretical Analysis of the Effect of the Hydrogenation of Graphene to Graphane on Its Mechanical Properties. Phys. Chem. Chem. Phys. 2013, 15, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tang, X.; Chen, F.; Yang, Y.; Liu, J.; Li, H.; Chen, D. Radiation damage resistance and interface stability of copper-graphene nanolayered composite. J. Nucl. Mater. 2015, 460, 16–22. [Google Scholar] [CrossRef]
- Youbin, K.; Jinwook, B.; Sunghwan, K.; Sangmin, K.; Seunghwa, R.; Seokwoo, J.; Seung, M.H. Radiation resistant vanadium-graphene nanolayered composite. Sci. Rep. 2016, 6, 24785. [Google Scholar]
- Si, S.; Li, W.; Zhao, X.; Han, M.; Yue, Y.; Wu, W.; Guo, S.; Zhang, S.; Dai, Z.; Wang, S.; et al. Significant radiation tolerance and moderate reduction in thermal transport of a tungsten nanofilm by inserting monolayer graphene. Adv. Mater. 2017, 29, 1604623. [Google Scholar] [CrossRef]
- Pentecoste, L.; Brault, P.; Thomann, A.L.; Desgardin, P.; Lecas, T.; Belhabib, T.; Barthe, M.F.; Sauvage, T. Low Energy and low fluence helium implantations in tungsten: Molecular dynamics simulations and experiments. J. Nucl. Mater. 2015, 470, 44–54. [Google Scholar] [CrossRef]
- Peng, Q.; Meng, F.; Yang, Y.; Lu, C.; Deng, H.; Wang, L.; De, S.; Gao, F. Shockwave generates <100> dislocation loops in bcc iron. Nat. Commun. 2018, 9, 4880. [Google Scholar] [CrossRef]
- Granberg, F.; Terentyev, D.; Nordlund, K. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 352, 77–80. [Google Scholar] [CrossRef]
- Henriksson, K.O.; Björkas, C.; Nordlund, K. Atomistic simulations of stainless steels: A many-body potential for the Fe-Cr-C system. J. Phys. Condens. Matter. 2013, 25, 445401. [Google Scholar] [CrossRef]
- Ziegler, J.F. The stopping and range of ions in solids. Ion Implant. Sci. Technol. 1984, 10, 51–108. [Google Scholar]
- Beck, D.E. A new interatomic potential function for helium. Mol. Phys. 1968, 14, 311–315. [Google Scholar] [CrossRef]
- Linn, B.C. Crystal Orientation Effects on Implantation of Low-Energy Hydrogen, Helium and Hydrogen/helium Mixtures in Plasma-Facing Tungsten Surfaces. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 2014. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Stefanou, N.; Akai, H.; Zeller, R. An efficient numerical method to calculate shape truncation functions for Wigner-Seitz atomic polyhedra. Comput. Phys. Commun. 1990, 60, 231–238. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xie, L.; Peng, Q.; Li, R. Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study. Materials 2019, 12, 217. https://doi.org/10.3390/ma12020217
Liu S, Xie L, Peng Q, Li R. Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study. Materials. 2019; 12(2):217. https://doi.org/10.3390/ma12020217
Chicago/Turabian StyleLiu, Shuzhuang, Lu Xie, Qing Peng, and Rui Li. 2019. "Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study" Materials 12, no. 2: 217. https://doi.org/10.3390/ma12020217
APA StyleLiu, S., Xie, L., Peng, Q., & Li, R. (2019). Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study. Materials, 12(2), 217. https://doi.org/10.3390/ma12020217