Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. The Migration and Aggregation of He in the Matrix
3.2. Point Defects in Fe Matrix and SWCNT/Fe Composite
3.3. The Effect of Double-Walled Carbon Nanotube (DWCNT)/Fe Composite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kesternich, W. A possible solution of the problem of helium embrittlement. J. Nucl. Mater. 1985, 127, 153–160. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Dudarev, S.L.; Nguyenmanh, D.; Zheng, S.; Packer, L.W.; Sublet, J.C. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials. J. Nucl. Mater. 2013, 442, 755–760. [Google Scholar] [CrossRef]
- Alimov, V.K.; Hatano, Y.; Sugiyama, K.; Balden, M.; Höschen, T.; Oyaidzu, M.; Roth, J.; Dorner, J.; Fußeder, M.; Yamanishi, T. Surface modification and deuterium retention in reduced activation ferritic martensitic steels exposed to low-energy, high flux D plasma and D2 gas. Phys. Scr. 2014, T159, 014049. [Google Scholar] [CrossRef]
- Pang, L.X.; Sun, K.N.; Ren, S.; Sun, C.; Fan, R.H.; Lu, Z.H. Fabrication and microstructure of Fe 3Al matrix composite reinforced by carbon nanotube. Mater. Sci. Eng. A 2007, 447, 146–149. [Google Scholar] [CrossRef]
- Zhernenkov, M.; Gill, S.; Stanic, V.; Dimasi, E.; Kisslinger, K.; Baldwin, J.K.; Misra, A.; Demkowicz, M.J.; Ecker, L. Design of radiation resistant metallic multilayers for advanced nuclear systems. Appl. Phys. Lett. 2014, 104, 25–42. [Google Scholar] [CrossRef]
- Yamashita, S.; Akasaka, N.; Ukai, S.; Ohnuki, S. Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature. J. Nucl. Mater. 2007, 367, 202–207. [Google Scholar] [CrossRef]
- Shen, T.D.; Feng, S.; Tang, M.; Valdez, J.A.; Wang, Y.; Sickafus, K.E. Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 2007, 90, 749–763. [Google Scholar] [CrossRef]
- Hong, M.; Ren, F.; Zhang, H.; Xiao, X.; Yang, B.; Tian, C.; Fu, D.; Wang, Y.; Jiang, C. Enhanced radiation tolerance in nitride multilayered nanofilms with small period-thicknesses. Appl. Phys. Lett. 2012, 101, 153117. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Li, R.; Wang, S.W.; Peng, Q. Tuning the slide-roll motion mode of carbon nanotubes via hydroxyl groups. Nanoscale Res. Lett. 2018, 13, 138. [Google Scholar] [CrossRef]
- Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube transistors. Nature 2003, 424, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller, J. Carbon nanotubes for high-performance electronics—Progress and prospect. Proc. IEEE 2008, 96, 201–211. [Google Scholar] [CrossRef]
- Ebbesen, T.W. Synthesis and characterization of carbon nanotubes. In Physics and Chemistry of the Fullerenes. NATO ASI Series (Series C: Mathematical and Physical Sciences); Springer: Dordrecht, Netherlands, 1994. [Google Scholar]
- Lee, Y.H.; Kim, S.G.; Tománek, D. Catalytic growth of single-wall carbon nanotubes: An ab initio study. Phys. Rev. Lett. 1997, 78, 2393–2396. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- He, C.; Zhao, N.Q.; Shi, C.; Du, X.W.; Li, J.; Li, H.; Cui, Q. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv. Mater. 2007, 19, 1128–1132. [Google Scholar] [CrossRef]
- Li, S.; Sun, B.; Imai, H.; Mimoto, T.; Kondoh, K. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. Part A-Appl. Sci. Manuf. 2013, 48, 57–66. [Google Scholar] [CrossRef]
- Mindivan, H.; Efe, A.; Kosatepe, A.H.; Kayali, E.S. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Appl. Surf. Sci. 2014, 318, 234–243. [Google Scholar] [CrossRef]
- Kang, P.S.; Di, C.; Kushima, A.; Li, M.; Kim, S.; Yang, Y.; Wang, Z.; Park, J.G.; Lee, Y.H.; Gonzalez, R.I.; et al. Dispersion of carbon nanotubes in aluminum improves radiation resistance. Nano Energy 2016, 22, 319–327. [Google Scholar] [Green Version]
- González, R.I.; Valencia, F.; Mella, J.; Duin, A.C.T.; Kang, P.S.; Li, J.; Kiwi, M.; Bringa, E.M. Metal-nanotube composites as radiation resistant materials. Appl. Phys. Lett. 2016, 109, 033108. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jin, J.; Cao, J.; Yang, P.; Peng, Q. Interaction of Edge Dislocations with Graphene Nanosheets in Graphene/Fe Composites. Crystals 2018, 8, 160. [Google Scholar] [CrossRef]
- Peng, Q.; Liang, C.; Ji, W.; De, S. A Theoretical Analysis of the Effect of the Hydrogenation of Graphene to Graphane on Its Mechanical Properties. Phys. Chem. Chem. Phys. 2013, 15, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tang, X.; Chen, F.; Yang, Y.; Liu, J.; Li, H.; Chen, D. Radiation damage resistance and interface stability of copper-graphene nanolayered composite. J. Nucl. Mater. 2015, 460, 16–22. [Google Scholar] [CrossRef]
- Youbin, K.; Jinwook, B.; Sunghwan, K.; Sangmin, K.; Seunghwa, R.; Seokwoo, J.; Seung, M.H. Radiation resistant vanadium-graphene nanolayered composite. Sci. Rep. 2016, 6, 24785. [Google Scholar]
- Si, S.; Li, W.; Zhao, X.; Han, M.; Yue, Y.; Wu, W.; Guo, S.; Zhang, S.; Dai, Z.; Wang, S.; et al. Significant radiation tolerance and moderate reduction in thermal transport of a tungsten nanofilm by inserting monolayer graphene. Adv. Mater. 2017, 29, 1604623. [Google Scholar] [CrossRef]
- Pentecoste, L.; Brault, P.; Thomann, A.L.; Desgardin, P.; Lecas, T.; Belhabib, T.; Barthe, M.F.; Sauvage, T. Low Energy and low fluence helium implantations in tungsten: Molecular dynamics simulations and experiments. J. Nucl. Mater. 2015, 470, 44–54. [Google Scholar] [CrossRef]
- Peng, Q.; Meng, F.; Yang, Y.; Lu, C.; Deng, H.; Wang, L.; De, S.; Gao, F. Shockwave generates <100> dislocation loops in bcc iron. Nat. Commun. 2018, 9, 4880. [Google Scholar] [CrossRef]
- Granberg, F.; Terentyev, D.; Nordlund, K. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 352, 77–80. [Google Scholar] [CrossRef]
- Henriksson, K.O.; Björkas, C.; Nordlund, K. Atomistic simulations of stainless steels: A many-body potential for the Fe-Cr-C system. J. Phys. Condens. Matter. 2013, 25, 445401. [Google Scholar] [CrossRef]
- Ziegler, J.F. The stopping and range of ions in solids. Ion Implant. Sci. Technol. 1984, 10, 51–108. [Google Scholar]
- Beck, D.E. A new interatomic potential function for helium. Mol. Phys. 1968, 14, 311–315. [Google Scholar] [CrossRef]
- Linn, B.C. Crystal Orientation Effects on Implantation of Low-Energy Hydrogen, Helium and Hydrogen/helium Mixtures in Plasma-Facing Tungsten Surfaces. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 2014. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Stefanou, N.; Akai, H.; Zeller, R. An efficient numerical method to calculate shape truncation functions for Wigner-Seitz atomic polyhedra. Comput. Phys. Commun. 1990, 60, 231–238. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xie, L.; Peng, Q.; Li, R. Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study. Materials 2019, 12, 217. https://doi.org/10.3390/ma12020217
Liu S, Xie L, Peng Q, Li R. Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study. Materials. 2019; 12(2):217. https://doi.org/10.3390/ma12020217
Chicago/Turabian StyleLiu, Shuzhuang, Lu Xie, Qing Peng, and Rui Li. 2019. "Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study" Materials 12, no. 2: 217. https://doi.org/10.3390/ma12020217
APA StyleLiu, S., Xie, L., Peng, Q., & Li, R. (2019). Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study. Materials, 12(2), 217. https://doi.org/10.3390/ma12020217