# Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results and Discussions

#### 3.1. The Migration and Aggregation of He in the Matrix

#### 3.2. Point Defects in Fe Matrix and SWCNT/Fe Composite

#### 3.3. The Effect of Double-Walled Carbon Nanotube (DWCNT)/Fe Composite

## 4. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Kesternich, W. A possible solution of the problem of helium embrittlement. J. Nucl. Mater.
**1985**, 127, 153–160. [Google Scholar] [CrossRef] - Gilbert, M.R.; Dudarev, S.L.; Nguyenmanh, D.; Zheng, S.; Packer, L.W.; Sublet, J.C. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials. J. Nucl. Mater.
**2013**, 442, 755–760. [Google Scholar] [CrossRef] - Alimov, V.K.; Hatano, Y.; Sugiyama, K.; Balden, M.; Höschen, T.; Oyaidzu, M.; Roth, J.; Dorner, J.; Fußeder, M.; Yamanishi, T. Surface modification and deuterium retention in reduced activation ferritic martensitic steels exposed to low-energy, high flux D plasma and D2 gas. Phys. Scr.
**2014**, T159, 014049. [Google Scholar] [CrossRef] - Pang, L.X.; Sun, K.N.; Ren, S.; Sun, C.; Fan, R.H.; Lu, Z.H. Fabrication and microstructure of Fe 3Al matrix composite reinforced by carbon nanotube. Mater. Sci. Eng. A
**2007**, 447, 146–149. [Google Scholar] [CrossRef] - Zhernenkov, M.; Gill, S.; Stanic, V.; Dimasi, E.; Kisslinger, K.; Baldwin, J.K.; Misra, A.; Demkowicz, M.J.; Ecker, L. Design of radiation resistant metallic multilayers for advanced nuclear systems. Appl. Phys. Lett.
**2014**, 104, 25–42. [Google Scholar] [CrossRef] - Yamashita, S.; Akasaka, N.; Ukai, S.; Ohnuki, S. Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature. J. Nucl. Mater.
**2007**, 367, 202–207. [Google Scholar] [CrossRef] - Shen, T.D.; Feng, S.; Tang, M.; Valdez, J.A.; Wang, Y.; Sickafus, K.E. Enhanced radiation tolerance in nanocrystalline MgGa
_{2}O_{4}. Appl. Phys. Lett.**2007**, 90, 749–763. [Google Scholar] [CrossRef] - Hong, M.; Ren, F.; Zhang, H.; Xiao, X.; Yang, B.; Tian, C.; Fu, D.; Wang, Y.; Jiang, C. Enhanced radiation tolerance in nitride multilayered nanofilms with small period-thicknesses. Appl. Phys. Lett.
**2012**, 101, 153117. [Google Scholar] [CrossRef] - Iijima, S. Helical microtubules of graphitic carbon. Nature
**1991**, 354, 56–58. [Google Scholar] [CrossRef] - Li, R.; Wang, S.W.; Peng, Q. Tuning the slide-roll motion mode of carbon nanotubes via hydroxyl groups. Nanoscale Res. Lett.
**2018**, 13, 138. [Google Scholar] [CrossRef] - Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube transistors. Nature
**2003**, 424, 654–657. [Google Scholar] [CrossRef] [PubMed] - Appenzeller, J. Carbon nanotubes for high-performance electronics—Progress and prospect. Proc. IEEE
**2008**, 96, 201–211. [Google Scholar] [CrossRef] - Ebbesen, T.W. Synthesis and characterization of carbon nanotubes. In Physics and Chemistry of the Fullerenes. NATO ASI Series (Series C: Mathematical and Physical Sciences); Springer: Dordrecht, Netherlands, 1994. [Google Scholar]
- Lee, Y.H.; Kim, S.G.; Tománek, D. Catalytic growth of single-wall carbon nanotubes: An ab initio study. Phys. Rev. Lett.
**1997**, 78, 2393–2396. [Google Scholar] [CrossRef] - Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science
**1997**, 277, 1971–1975. [Google Scholar] [CrossRef] - He, C.; Zhao, N.Q.; Shi, C.; Du, X.W.; Li, J.; Li, H.; Cui, Q. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv. Mater.
**2007**, 19, 1128–1132. [Google Scholar] [CrossRef] - Li, S.; Sun, B.; Imai, H.; Mimoto, T.; Kondoh, K. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. Part A-Appl. Sci. Manuf.
**2013**, 48, 57–66. [Google Scholar] [CrossRef] - Mindivan, H.; Efe, A.; Kosatepe, A.H.; Kayali, E.S. Fabrication and characterization of carbon nanotube reinforced magnesium matrix composites. Appl. Surf. Sci.
**2014**, 318, 234–243. [Google Scholar] [CrossRef] - Kang, P.S.; Di, C.; Kushima, A.; Li, M.; Kim, S.; Yang, Y.; Wang, Z.; Park, J.G.; Lee, Y.H.; Gonzalez, R.I.; et al. Dispersion of carbon nanotubes in aluminum improves radiation resistance. Nano Energy
**2016**, 22, 319–327. [Google Scholar] [Green Version] - González, R.I.; Valencia, F.; Mella, J.; Duin, A.C.T.; Kang, P.S.; Li, J.; Kiwi, M.; Bringa, E.M. Metal-nanotube composites as radiation resistant materials. Appl. Phys. Lett.
**2016**, 109, 033108. [Google Scholar] [CrossRef] [Green Version] - Wang, L.; Jin, J.; Cao, J.; Yang, P.; Peng, Q. Interaction of Edge Dislocations with Graphene Nanosheets in Graphene/Fe Composites. Crystals
**2018**, 8, 160. [Google Scholar] [CrossRef] - Peng, Q.; Liang, C.; Ji, W.; De, S. A Theoretical Analysis of the Effect of the Hydrogenation of Graphene to Graphane on Its Mechanical Properties. Phys. Chem. Chem. Phys.
**2013**, 15, 2003–2011. [Google Scholar] [CrossRef] [PubMed] - Huang, H.; Tang, X.; Chen, F.; Yang, Y.; Liu, J.; Li, H.; Chen, D. Radiation damage resistance and interface stability of copper-graphene nanolayered composite. J. Nucl. Mater.
**2015**, 460, 16–22. [Google Scholar] [CrossRef] - Youbin, K.; Jinwook, B.; Sunghwan, K.; Sangmin, K.; Seunghwa, R.; Seokwoo, J.; Seung, M.H. Radiation resistant vanadium-graphene nanolayered composite. Sci. Rep.
**2016**, 6, 24785. [Google Scholar] - Si, S.; Li, W.; Zhao, X.; Han, M.; Yue, Y.; Wu, W.; Guo, S.; Zhang, S.; Dai, Z.; Wang, S.; et al. Significant radiation tolerance and moderate reduction in thermal transport of a tungsten nanofilm by inserting monolayer graphene. Adv. Mater.
**2017**, 29, 1604623. [Google Scholar] [CrossRef] - Pentecoste, L.; Brault, P.; Thomann, A.L.; Desgardin, P.; Lecas, T.; Belhabib, T.; Barthe, M.F.; Sauvage, T. Low Energy and low fluence helium implantations in tungsten: Molecular dynamics simulations and experiments. J. Nucl. Mater.
**2015**, 470, 44–54. [Google Scholar] [CrossRef] - Peng, Q.; Meng, F.; Yang, Y.; Lu, C.; Deng, H.; Wang, L.; De, S.; Gao, F. Shockwave generates <100> dislocation loops in bcc iron. Nat. Commun.
**2018**, 9, 4880. [Google Scholar] [CrossRef] - Granberg, F.; Terentyev, D.; Nordlund, K. Molecular dynamics investigation of the interaction of dislocations with carbides in BCC Fe. Nucl. Instrum. Methods Phys. Res. Sect. B
**2015**, 352, 77–80. [Google Scholar] [CrossRef] - Henriksson, K.O.; Björkas, C.; Nordlund, K. Atomistic simulations of stainless steels: A many-body potential for the Fe-Cr-C system. J. Phys. Condens. Matter.
**2013**, 25, 445401. [Google Scholar] [CrossRef] - Ziegler, J.F. The stopping and range of ions in solids. Ion Implant. Sci. Technol.
**1984**, 10, 51–108. [Google Scholar] - Beck, D.E. A new interatomic potential function for helium. Mol. Phys.
**1968**, 14, 311–315. [Google Scholar] [CrossRef] - Linn, B.C. Crystal Orientation Effects on Implantation of Low-Energy Hydrogen, Helium and Hydrogen/helium Mixtures in Plasma-Facing Tungsten Surfaces. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 2014. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph.
**1996**, 14, 33–38. [Google Scholar] [CrossRef] - Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng.
**2009**, 18, 015012. [Google Scholar] [CrossRef] - Stefanou, N.; Akai, H.; Zeller, R. An efficient numerical method to calculate shape truncation functions for Wigner-Seitz atomic polyhedra. Comput. Phys. Commun.
**1990**, 60, 231–238. [Google Scholar] [CrossRef]

**Figure 1.**Simulation models: (

**a**) bcc-Fe; (

**b**) single-walled carbon nanotube (SWCNT)/Fe composite. The red, yellow, and blue balls denote the Fe, C, and He atoms, respectively.

**Figure 2.**He clusters in the matrix when the incident energy of the He atoms was 300 eV. (

**a**) Fe matrix; (

**b**) SWCNT/Fe composite. The blue and yellow balls denote He and C atoms, respectively.

**Figure 3.**Surface topography of the matrix under irradiation. (

**a**) He bubble burst from the Fe matrix, t = 1800 ps; (

**b**) the surface topography of SWCNT/Fe composite, t = 1800 ps; (

**c**) He bubble burst from the SWCNT/Fe composite, t = 2068 ps.

**Figure 4.**He clusters in the matrix when the incident energy of the He atoms was 600 eV. (

**a**) Fe matrix; (

**b**) SWCNT/Fe composite. The blue and yellow balls denote He and C atoms, respectively.

**Figure 5.**The number of He clusters in the Fe matrix and the SWCNT/Fe composite, t = 1200 ps. The incident energies of the He atoms were (

**a**) 300 eV; (

**b**) 600 eV; and (

**c**) 900 eV.

**Figure 6.**The number of point defects in Fe and SWCNT/Fe during the irradiation process. The incident energies of the He atoms were (

**a**) 300 eV; (

**b**) 600 eV; and (

**c**) 900 eV.

**Figure 7.**Point defects distribution in the Fe matrix and the SWCNT/Fe composite, t = 1200 ps. The left and right sides of (

**a**), (

**b**), and (

**c**) represent the Fe matrix and the SWCNT/Fe composite, respectively. The red and green balls denote interstitials and vacancies, respectively. The blue and yellow balls denote He atoms and C atoms on the carbon nanotubes, respectively. The incident energies of the He atoms were (

**a**) 300 eV; (

**b**) 600 eV; and (

**c**) 900 eV.

**Figure 8.**The distribution of He clusters in SWCNT/Fe and double-walled carbon nanotube (DWCNT)/Fe composites. The incident energies of the He atoms were (

**a**) 600 eV; and (

**b**) 900 eV.

**Figure 9.**The number of He clusters in SWCNT/Fe and DWCNT/Fe composites, t = 1400 ps. The incident energies of the He atoms were (

**a**) 300 eV; (

**b**) 600 eV; and (

**c**) 900 eV.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, S.; Xie, L.; Peng, Q.; Li, R.
Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study. *Materials* **2019**, *12*, 217.
https://doi.org/10.3390/ma12020217

**AMA Style**

Liu S, Xie L, Peng Q, Li R.
Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study. *Materials*. 2019; 12(2):217.
https://doi.org/10.3390/ma12020217

**Chicago/Turabian Style**

Liu, Shuzhuang, Lu Xie, Qing Peng, and Rui Li.
2019. "Carbon Nanotubes Enhance the Radiation Resistance of bcc Iron Revealed by Atomistic Study" *Materials* 12, no. 2: 217.
https://doi.org/10.3390/ma12020217