Cost-Effectiveness Study of One-Stage Treatment of Chronic Osteomyelitis with Bioactive Glass S53P4
Abstract
1. Introduction
2. Materials and Methods
2.1. Guidelines
2.2. Treatment Procedures
2.3. Study Design
2.4. Estimating Resource Use and Costs
2.5. Study Endpoints
2.6. Analytical methods
2.6.1. Cost-Effectiveness and Costs
2.6.2. Sensitivity Analyses
2.6.3. Clinical Outcomes
3. Results
3.1. Patient Characteristics
3.2. Cost Analyses
3.3. Cost-Effectiveness Analyses
3.4. Sensitivity Analysis
3.5. Clinical Effectiveness
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Cheatle, M.D. The effect of chronic orthopedic infection on quality of life. Orthop. Clin. N. Am. 1991, 22, 539–547. [Google Scholar] [PubMed]
- Lerner, R.K.; Esterhai, J.L., Jr.; Polomono, R.C.; Cheatle, M.C.; Heppenstall, R.B.; Brighton, C.T. Psychosocial, functional, and quality of life assessment of patients with posttraumatic fracture nonunion, chronic refractory osteomyelitis, and lower extremity amputation. Arch. Phys. Med. Rehabil. 1991, 72, 122–126. [Google Scholar] [PubMed]
- Cohen, G.; Lager, S.; Cece, D.; Rubel, I.F. The Social Impact Associated with Chronic Osteomyelitis. A Grading System for the Most Frequent Complication. Osteosynth. Trauma Care 2004, 12, 74–76. [Google Scholar] [CrossRef]
- Walter, G.; Kemmerer, M.; Kappler, C.; Hoffmann, R. Treatment Algorithms for Chronic Osteomyelitis. Dtsch Arztebl. Int. 2012, 109, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Parsons, B.; Strauss, E. Surgical management of chronic osteomyelitis. Am. J. Surg. 2004, 188 (Suppl. 1), 57–66. [Google Scholar] [CrossRef]
- Andersson, O.H.; Liu, G.Z.; Karlsson, K.H.; Niemi, L.; Miettinen, J.; Juhanoja, J. In vivo behavior of glasses in the SiO-Na2O-CaO-P2O5-Al2O3-B2O3 system. J. Mater. Sci. Mater. Med. 1990, 1, 219–227. [Google Scholar] [CrossRef]
- Andersson, O.H.; Karlsson, K.H.; Kangasniemi, K. Calcium-phosphate formation at the surface of bioactive glass in vivo. J. Non-Cryst. Solids 1990, 119, 290–296. [Google Scholar] [CrossRef]
- Andersson, O.H.; Kangasniemi, I. Calcium-phosphate formation at the surface of bioactive glass in vitro. J. Biomed. Mater. Res. 1991, 25, 1019–1030. [Google Scholar] [CrossRef]
- Andersson, O.H.; Karlsson, K.H.; Gatti, A.M.; Zaffe, D.; Miettinen, J.; Yli-Urpo, A. Bioactive as a bone substitute. In New Trends in Bone Grafting; Lindholm, T.S., Ed.; University of Tampere Publication: Tampere, Finland, 1992; pp. 127–131. [Google Scholar]
- Heikkila, J.T.; Aho, A.J.; Yli-Urpo, A.; Andersson, O.H.; Aho, H.J.; Happonen, R.P. Bioactive glass versus hydroxylapatite in reconstruction of osteochondral defects in the rabbit. Acta Orthop. Scand. 1993, 64, 678–682. [Google Scholar] [CrossRef]
- Heikkila, J.T.; Aho, H.J.; Yli-Urpo, A.; Happonen, R.P.; Aho, A.J. Bone formation in rabbit cancellous bone defects filled with bioactive glass granules. Acta Orthop. Scand. 1995, 66, 463–467. [Google Scholar] [CrossRef]
- Gough, J.E.; Notingher, I.; Hench, L.L. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J. Biomed. Mater. Res. Part. A 2004, 68, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Gough, J.E.; Jones, J.R.; Hench, L.L. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 2004, 25, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- Loty, C.; Sautier, J.M.; Tan, M.T.; Oboeuf, M.; Jallot, E.; Boulekbache, H.; Greenspan, D.; Forest, N. Bioactive glass stimulates in vitro osteoblast differentiation and creates a favorable template for bone tissue formation. J. Bone Miner. Res. 2001, 16, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Davies, J.E. The in vitro response of osteoblasts to bioactive glass. Biomaterials 1987, 8, 275–284. [Google Scholar] [CrossRef]
- Vrouwenvelder, W.C.A.; Groot, C.G.; Degroot, K. Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium-alloy, and stainless-steel. J. Biomed. Mater. Res. 1993, 27, 465–475. [Google Scholar] [CrossRef]
- Vrouwenvelder, W.C.A.; Groot, C.G.; Degroot, K. Behavior of fetal-rat osteoblasts cultured in vitro on bioactive glass and nonreactive glasses. Biomaterials 1992, 13, 382–392. [Google Scholar] [CrossRef]
- Waselau, M.; Patrikoski, M.; Juntunen, M.; Kujala, K.; Kaariainen, M.; Kuokkanen, H.; Sandor, G.K.; Vapaavuori, O.; Suuronen, R.; Mannerstrom, B.; et al. Effects of bioactive glass S53P4 or beta-tricalcium phosphate and bone morphogenetic protein-2 and bone morphogenetic protein-7 on osteogenic differentiation of human adipose stem cells. J. Tissue Eng. 2012, 3, 2041731412467789. [Google Scholar] [CrossRef]
- Xynos, I.D.; Edgar, A.J.; Buttery, L.D.K.; Hench, L.L.; Polak, J.M. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass R 45S5 dissolution. J. Biomed. Mater. Res. 2001, 55, 151–157. [Google Scholar] [CrossRef]
- Xynos, I.D.; Hukkanen, M.V.J.; Batten, J.J.; Buttery, L.D.; Hench, L.L.; Polak, J.M. Bioglass ® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcif. Tissue Int. 2000, 67, 321–329. [Google Scholar] [CrossRef]
- Xynos, I.D.; Edgar, A.J.; Buttery, L.D.K.; Hench, L.L.; Polak, J.M. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem. Biophys. Res. Commun. 2000, 276, 461–465. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Yi, Q.F.; Nei, H.D.; Ling, Y.L.; Zhou, J.N.; Liu, L.H.; Liu, X.P. Mineralization and osteoblast response to bioactive glass in vitro. J. Med. Eng. Technol. 2010, 34, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Lepparanta, O.; Vaahtio, M.; Peltola, T.; Zhang, D.; Hupa, L.; Hupa, M.; Ylanen, H.; Salonen, J.I.; Viljanen, M.K.; Eerola, E. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J. Mater. Sci. Mater. Med. 2008, 19, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Munukka, E.; Lepparanta, O.; Korkeamaki, M.; Vaahtio, M.; Peltola, T.; Zhang, D.; Hupa, L.; Ylanen, H.; Salonen, J.I.; Viljanen, M.K. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J. Mater. Sci. Mater. Med. 2008, 19, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lepparanta, O.; Munukka, E.; Ylanen, H.; Viljanen, M.K.; Eerola, E.; Hupa, M.; Hupa, L. Antibacterial effects and dissolution behaviour of six bioactive glasses. J. Biomed. Mater. Res. A. 2010, 93, 475–483. [Google Scholar] [PubMed]
- Coraca-Huber, D.C.; Fille, M.; Hausdorfer, J.; Putzer, D.; Nogler, M. Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro. J. Orthop. Res. 2014, 32, 175–177. [Google Scholar] [CrossRef]
- Drago, L.; Vassena, C.; Fenu, S.; De, V.E.; Signori, V.; De, F.R.; Romano, C.L. In vitro antibiofilm activity of bioactive glass S53P4. Future Microbiol. 2014, 9, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Gergely, I.; Zazgyva, A.; Man, A.; Zuh, S.G.; Pop, T.S. The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads. Acta Microbiol. Immunol. Hung. 2014, 61, 145–160. [Google Scholar] [CrossRef]
- Aurégan, J.-C.; Bégué, T. Bioactive glass for long bone infection: A systematic review. Injury 2015, 46, S3–S7. [Google Scholar] [CrossRef]
- Drago, L.; Romanò, D.; De Vecchi, E.; Vassena, C.; Logoluso, N.; Mattina, R.; Romanò, C.L. Bioactive glass BAG-S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bones: An in vitro and prospective clinical study. BMC Infect. Dis. 2013, 13, 1–8. [Google Scholar] [CrossRef]
- van Gestel, N.A.P.; Geurts, J.; Hulsen, D.J.W.; van Rietbergen, B.; Hofmann, S.; Arts, J.J. Clinical Applications of S53P4 Bioactive Glass in Bone Healing and Osteomyelitic Treatment: A Literature Review. Biomed. Res. Int. 2015, 2015, 12. [Google Scholar] [CrossRef]
- Lindfors, N.C.; Hyvönen, P.; Nyyssönen, M.; Kirjavainen, M.; Kankare, J.; Gullichsen, E.; Salo, J. Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone 2010, 47, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, D.; Evans, D.B. Economic evaluation in health: Saving money or improving care? J. Med. Econ. 2007, 10, 325–337. [Google Scholar] [CrossRef][Green Version]
- Cunningham, S.J. Economics: Economic evaluation of healthcare is it important to us? Br. Dent. J. 2000, 188, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Husereau, D.; Drummond, M.; Petrou, S.; Carswell, C.; Moher, D.; Greenberg, D.; Augustovski, F.; Briggs, A.H.; Mauskopf, J.; Loder, E. Consolidated Health Economic Evaluation Reporting Standards (CHEERS)-2014, Explanation and Elaboration: A Report of the ISPOR Health Economic Evaluation Publication Guidelines Good Reporting Practices Task Force. Value Health 2013, 16, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Walenkamp, G.H.I.M. How I do it: Chronic osteomyelitis. Acta Orthop. 1997, 68, 497–506. [Google Scholar] [CrossRef]
- Termaat, M.F.; Raijmakers, P.G.H.M.; Scholten, H.J.; Bakker, F.C.; Patka, P.; Haarman, H.J.T.M. The Accuracy of Diagnostic Imaging for the Assessment of Chronic Osteomyelitis: A Systematic Review and Meta-Analysis. JBJS Am. 2005, 87, 2464–2471. [Google Scholar] [CrossRef] [PubMed]
- Wenter, V.; Müller, J.-P.; Albert, N.L.; Lehner, S.; Fendler, W.P.; Bartenstein, P.; Cyran, C.C.; Friederichs, J.; Militz, M.; Hacker, M.; et al. The diagnostic value of [18F] FDG PET for the detection of chronic osteomyelitis and implant-associated infection. Eur. J. Nucl. Med. Mol. Imaging 2015, 43, 749–761. [Google Scholar] [CrossRef]
- Stumpe, K.D.M.; Strobel, K. 18F FDG-PET imaging in musculoskeletal infection. Q J. Nucl. Med. Mol. Imaging 2006, 50, 12. [Google Scholar]
- van der Bruggen, W.; Bleeker-Rovers, C.P.; Boerman, O.C.; Gotthardt, M.; Oyen, W.J.G. PET and SPECT in Osteomyelitis and Prosthetic Bone and Joint Infections: A Systematic Review. Semin. Nucl. Med. 2009, 40, 3–15. [Google Scholar] [CrossRef]
- Brown, T.L.Y.; Spencer, H.J.; Beenken, K.E.; Alpe, T.L.; Bartel, T.B.; Bellamy, W.; Gruenwald, J.M.; Skinner, R.A.; McLaren, S.G.; Smeltzer, M.S. Evaluation of Dynamic 18F-FDG-PET Imaging for the Detection of Acute Post-Surgical Bone Infection. PLoS ONE 2012, 7, e41863. [Google Scholar] [CrossRef]
- Bernard, L.; El, H.; Pron, B.; Lotthé, A.; Gleizes, V.; Signoret, F.; Denormandie, P.; Gaillard, J.L.; Perronne, C.; Groupe d’Etude sur, l.O. Outpatient parenteral antimicrobial therapy (OPAT) for the treatment of osteomyelitis: Evaluation of efficacy, tolerance and cost. J. Clin. Pharm. 2001, 26, 445–451. [Google Scholar] [CrossRef]
- Tice, A.D. Outpatient Parenteral Antimicrobial Therapy for Osteomyelitis. Infect. Dis. Clin. N. Am. 1998, 12, 903–919. [Google Scholar] [CrossRef]
- Mackintosh, C.L.; White, H.A.; Seaton, R.A. Outpatient parenteral antibiotic therapy (OPAT) for bone and joint infections: Experience from a UK teaching hospital-based service. J. Antimicrob. Chemother. 2011, 66, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Tice, A.D.; Hoaglund, P.A.; Shoultz, D.A. Risk factors and treatment outcomes in osteomyelitis. J. Antimicrob. Chemother. 2003, 51, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Briggs, A.; Wonderling, D.; Mooney, C. Pulling cost-effectiveness analysis up by its bootstraps: A non-parametric approach to confidence interval estimation. Health Econ. 1997, 6, 327–340. [Google Scholar] [CrossRef]
- van Mastrigt, G.A.P.G.; van Dielen, F.M.H.; Severens, J.L.; Voss, G.B.W.E.; Greve, J.W. One-Year Cost-Effectiveness of Surgical Treatment of Morbid Obesity: Vertical Banded Gastroplasty versus Lap-Band®. Obes. Surg. 2006, 16, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Brunenberg, D.; van Steijn, M.; Sluimer, J.; Bekebrede, L.; Bulstra, S.; Joore, M. Joint Recovery Programme versus Usual Care: An Economic Evaluation of a Clinical Pathway for Joint Replacement Surgery. Med. Care 2005, 43, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Brunenberg, D.; van Steijn, M.; Sluimer, J.; Cierny, G., III; Mader, J.T.; Penninck, J.J. The Classic: A Clinical Staging System for Adult Osteomyelitis. CORR 2003, 414, 7–24. [Google Scholar] [CrossRef]
- Valimaki, V.V.; Aro, H.T. Molecular Basis for Action of Bioactive Glasses as Bone Graft Substitute. Scand J. Surg. 2006, 95, 95–102. [Google Scholar] [CrossRef] [PubMed]
- McAndrew, J.; Efrimescu, C.; Sheehan, E.; Niall, D. Through the looking glass; bioactive glass S53P4 (Bonalive®) in the treatment of chronic osteomyelitis. Ir J. Med. Sci 2013, 182, 509–511. [Google Scholar] [CrossRef]
- Romano, C.; Logoluso, N.; Meani, E.; Romano, D.; De Vecchi, E.; Vassena, C.; Drago, L. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: A retrospective comparative study. Bone Jt. J. 2014, 96, 845–850. [Google Scholar] [CrossRef] [PubMed]
Total | Treatment Cohort (S53P4 Bioactive Glass) | Control Cohort (PMMA) | p-Value | |
---|---|---|---|---|
Patients | 50 | 25 | 25 | |
Gender (M/F) | 34/16 | 16/9 | 18/7 | 0.595 |
Age (years) [range] | 52.2 (SD = 17.3) | 53.5 (SD = 19.8) | 50.9 (SD = 14.8) | 0.554 |
BMI (kg/m2) [range] | 26.2 (SD = 5.4) | 26.5 (SD = 6.7) | 25.9 (SD =3.8) | 0.687 |
Smoking (Y/N) | 15/35 | 5/20 | 10/15 | 0.128 |
Previous surgeries | 1.9 (SD = 3.3) | 1.0 (SD = 2.6) | 2.7 (SD = 3.7) | 0.061 |
Time to surgery (months) [range] | 6.1 (SD = 7.9) | 4.0 (SD = 4.4) | 8.2 (SD = 9.9) | 0.057 |
Treatment Group | Control Group | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Host A | Host B | Host C | Subgroup total | Host A | Host B | Host C | Subgroup total | ||
Type I – Medullary | 4 | 1 | 0 | 5 | 2 | 0 | 0 | 2 | 7 |
Type II – Superficial | 0 | 1 | 0 | 1 | 3 | 2 | 0 | 5 | 6 |
Type III – Localized | 1 | 4 | 0 | 5 | 4 | 3 | 0 | 7 | 12 |
Type IV – Segmental | 1 | 4 | 1 | 6 | 4 | 6 | 1 | 11 | 17 |
Total | 6 | 10 | 1 | 17 | 13 | 11 | 1 | 25 | 42 |
Category Units | Unit Costs in Euros (€) | Treatment (S53P4) Cohort (n = 17) | Control (PMMA) Cohort (n = 25) | Average Cost Differences | |||
---|---|---|---|---|---|---|---|
Average Number | Mean Costs in € | Average Number | Mean COSTS in € | Cost differences | 95% CI | ||
Hospital costs | |||||||
Hospitalization | |||||||
Standard care unit (day) | 642 | 18.8 | 12,146.95 | 29.0 | 18,533.85 | −6497.04 | (−10,375; 2259) |
Intensive care unit (day) | 2015 | 0.0 | 0 | 0.3 | 622.23 | −622.23 | (−1934; 0) |
Total hospital costs | 17.9 | 11,882.14 | 29.3 | 19,154.23 | −7272.09 | (−12,339; −2,78) | |
Surgical costs | |||||||
General surgery (minutes) | 12.14 | 151.4 | 1841.88 | 222.3 | 2711.22 | −869.34 | (−1475; −253) |
Orthopaedic surgery (min) | 4.59 | 88.1 | 404.7 | 132.6 | 607.40 | −203.03 | (−342; −69) |
Average surgical costs | 2205.78 | 3306.72 | −1100.94 | (−1891; −345) | |||
PICC-line (per placement) | 569.90 | 0.6 | 344.27 | 0.24 | 162.22 | 182.05 | (23; 342) |
Fluoroscopy (per surgery) | 150.69 | 0.2 | 30.43 | 0.4 | 60.29 | −29.86 | (−66; 6) |
Total Surgical costs | 2574,71 | 3535.33 | −960.62 | (−1734; −218) | |||
Material costs | |||||||
S53P4 BAG (1 cc) | 89 | 22.3 | 2007.20 | n.a. | 0 | 2007.20 | |
PMMA beads (1 bead) | 6.12 | n.a. | 0.00 | 59.7 | 365.00 | −365.00 | |
Total material costs | 2012.15 | 372.24 | 1639.91 | (1123; 2.256) | |||
Imaging costs | |||||||
X-ray | 49.55 | 4.84 | 240.10 | 9.12 | 450.87 | −211 | (−343; −93) |
CT | 140/145 | 0.56 | 77.40 | 0.88 | 123.44 | −46 | (−129; −33) |
MRI | 229/215 | 0.40 | 86.24 | 0.48 | 102.53 | −16 | (−104; 86) |
FDG PET-CT | 1275.82 | 1.28 | 1620.14 | 0.36 | 460.98 | 1159 | (612; 1685) |
Scintigraphy | 338.50 | 0.12 | 40.76 | 0.32 | 105.94 | −65 | (−149; 27) |
Total imaging costs | 1960.63 | 1142.83 | 818 | (208; 1368) | |||
Blood sample analysis | |||||||
C-reactive protein | 4.07 | 9.1 | 36.87 | 12.12 | 48.96 | −12 | (−27; 0) |
Erythrocyte sedimentation | 1.08 | 8.7 | 9.38 | 12.76 | 13.80 | −4 | (−8; −1) |
Leukocyte count | 1.08 | 6.2 | 6.69 | 12.88 | 13.95 | −7 | (−11; −4) |
Sodium | 1.79 | 9.08 | 16.26 | 8.40 | 15.03 | 1 | (−6; 8) |
Potassium | 1.79 | 8.96 | 16.08 | 8.48 | 15.23 | 0.9 | (−7; 8) |
Creatinine | 1.78 | 9.12 | 16.29 | 8.88 | 15.84 | 0.5 | (−7; 8) |
Urea | 1.63 | 9.08 | 14.78 | 8.60 | 14.09 | 0.7 | (−6; 8) |
Alanine aminotransferase | 2.10 | 2.24 | 4.64 | 3.80 | 7.96 | −3 | (−6; 0) |
Aspartate aminotransferase | 1.95 | 2.20 | 4.31 | 3.76 | 7.32 | −3 | (−5; 0) |
Gammaglutyltransaminase | 1.96 | 2.24 | 4.38 | 3.68 | 7.23 | −3 | (−6; 0) |
Haemoglobin/haematocrit | 1,74 | 10.60 | 18.56 | 12.16 | 21.25 | −3 | (−11; 6) |
Total blood analysis | 148.40 | 179.26 | −31 | (−96; 28) | |||
Microbiological cultures | |||||||
Tissue cultures | 67.38 | 3.7 | 246.25 | 2.4 | 159.25 | 87 | (10; 160) |
Fluid cultures | 55.48 | 1.8 | 102.75 | 4.0 | 220.97 | −118 | (−20; −21) |
Total microbiology | 346.17 | 381.67 | −36 | (−139; 64) | |||
Antibiotics | |||||||
Intravenous (day) | 25.40 | 15.2 | 332.09 | 32.2 | 856.09 | −524 | (−848; −237) |
Oral (day) | 1.01 | 49.7 | 43.27 | 55.6 | 60.93 | −18 | (−41; 5) |
Total antibiotics | 346.46 | 873.48 | −527 | (−832; −277) | |||
Outpatients’ Clinic costs | |||||||
Visits | 163 | 8.1 | 1327.06 | 8.8 | 1445.51 | −118 | (−424; 202) |
Total costs | 20,568.31 (SD 1599.37) | 27,141.69 (SD 2410.12) | −6573 | (−12,572; −1295) |
Cost-Effectiveness per Eradication | ∆ Costs (€) | ∆ Effects | ICER | Distribution of Cost-Effectiveness Plane (quadrant, %) | |||
---|---|---|---|---|---|---|---|
NE | NW | SE | SW | ||||
Base case | −6533 | 0.12 | −54,443 | 0 | 1 | 93 | 6 |
Exclusion of outliers | |||||||
Treatment-based | −5926 | 0.08 | −69,730 | 0 | 0 | 91 | 8 |
Cost-based | −7217 | 0.12 | −59,508 | 0 | 0 | 95 | 5 |
Surgical time variance | |||||||
40% shorter | −7416 | 0.12 | −61,799 | 0 | 0 | 92 | 8 |
40% longer | −5651 | 0.12 | −47,087 | 1 | 1 | 92 | 6 |
Hospital stay variance | |||||||
40% shorter | −11477 | 0.12 | −95,642 | 0 | 0 | 93 | 7 |
40% longer | −1589 | 0.12 | −13,244 | 22 | 10 | 66 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geurts, J.; van Vugt, T.; Thijssen, E.; Arts, J.J. Cost-Effectiveness Study of One-Stage Treatment of Chronic Osteomyelitis with Bioactive Glass S53P4. Materials 2019, 12, 3209. https://doi.org/10.3390/ma12193209
Geurts J, van Vugt T, Thijssen E, Arts JJ. Cost-Effectiveness Study of One-Stage Treatment of Chronic Osteomyelitis with Bioactive Glass S53P4. Materials. 2019; 12(19):3209. https://doi.org/10.3390/ma12193209
Chicago/Turabian StyleGeurts, Jan, Tom van Vugt, Eline Thijssen, and Jacobus J. Arts. 2019. "Cost-Effectiveness Study of One-Stage Treatment of Chronic Osteomyelitis with Bioactive Glass S53P4" Materials 12, no. 19: 3209. https://doi.org/10.3390/ma12193209
APA StyleGeurts, J., van Vugt, T., Thijssen, E., & Arts, J. J. (2019). Cost-Effectiveness Study of One-Stage Treatment of Chronic Osteomyelitis with Bioactive Glass S53P4. Materials, 12(19), 3209. https://doi.org/10.3390/ma12193209