Effects of Non-Covalent Functionalized Graphene Oxide with Hyperbranched Polyesters on Mechanical Properties and Mechanism of Epoxy Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Non-Covalent Functionalized GO
2.3. Preparation of HBP-GO Reinforced Epoxy Composites
2.4. Characterization
3. Results and Discussion
3.1. Characterization of Non-Covalent Functionalized Graphene Oxide
3.2. HBP-GO Morphology and Their Dispersion in Epoxy Resin
3.3. The wetting and Interface Properties between HBP-GO and EP
3.4. Mechanical Properties
3.4.1. Microhardness
3.4.2. Tensile Properties
3.4.3. Fracture Toughness
3.4.4. Analysis of the Fracture Surface of HBP-GO/EP
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.L.; Hsieh, C.Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. J. Polym. Sci. Part A Polym. Chem. 2010, 44, 905–913. [Google Scholar] [CrossRef]
- Dennis, R.V.I. Towards Lightweight Nanocomposite Coatings for Corrosion Inhibition: Graphene, Carbon Nanotubes, and Nanostructured Magnesium as Case Studies. Ph.D. Thesis, State University of New York, Buffalo, NY, USA, 2015. [Google Scholar]
- Chukov, D.I.; Stepashkin, A.A.; Salimon, A.I. Highly filled elastomeric matrix composites: Structure and property evolution at low temperature carbonization. Mater. Des. 2018, 156, 22–31. [Google Scholar] [CrossRef]
- Dittanet, P.; Pearson, R.A. Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 2012, 53, 1890–1905. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Kinloch, A.J. The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 2010, 51, 6284–6294. [Google Scholar] [CrossRef] [Green Version]
- Bray, D.J.; Dittanet, P. The modelling of the toughening of epoxy polymers via silica nanoparticles: The effects of volume fraction and particle size. Polymer 2013, 54, 7022–7032. [Google Scholar] [CrossRef] [Green Version]
- Palraj, S.; Selvaraj, M. Corrosion and wear resistance behavior of nano-silica epoxy composite coatings. Prog. Org. Coat. 2015, 81, 132–139. [Google Scholar] [CrossRef]
- Gholipour, M.M.; Roghani, M.H. Synthesis of hyperbranched poly (amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin. Appl. Surf. Sci. 2017, 428, 1061–1069. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lin, W.N. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 2011, 49, 793–803. [Google Scholar] [CrossRef]
- Najafi, S.S.; Roghani, M.H. Incorporation of epoxy resin and graphene nanolayers into silica xerogel network: An insight into thermal improvement of resin. J. Sol-Gel. Sci. Technol. 2016, 80, 362–377. [Google Scholar] [CrossRef]
- Tarek, D.; Aleksey, V.M.; Sergey, K. The Structure and Mechanical Properties of the UHMWPE Films Modified by the Mixture of Graphene Nanoplates with Polyaniline. Polymers 2018, 11, 23. [Google Scholar] [Green Version]
- Azimi, R.; Roghani, M.H. Grafting poly (amidoamine) dendrimer-modified silica nanoparticles to graphene oxide for preparation of a composite and curing agent for epoxy resin. Polymer 2017, 126, 152–161. [Google Scholar] [CrossRef]
- Wan, Y.J.; Tang, L.C. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 2014, 69, 467–480. [Google Scholar] [CrossRef]
- Li, Z.; Wang, R. Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer 2013, 54, 6437–6446. [Google Scholar] [CrossRef]
- Jiang, S.D.; Bai, Z.M. Fabrication and characterization of graphene oxide-reinforced poly(vinyl alcohol)-based hybrid composites by the sol-gel method. Compos. Sci. Technol. 2014, 102, 51–58. [Google Scholar] [CrossRef]
- Hu, K.; Kulkarni, D.D. Graphene–Polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39, 1934–1972. [Google Scholar] [CrossRef]
- Moosaei, R.; Sharif, M. Enhancement of tensile, electrical and thermal properties of epoxy nanocomposites through chemical hybridization of polypyrrole and graphene oxide. Polym. Test. 2017, 60, 173–186. [Google Scholar] [CrossRef]
- Lin, Y.; Ehlert, G.J. Superhydrophobic Functionalized Graphene Aerogels. ACS Appl. Mater. Interfaces 2011, 3, 2200–2203. [Google Scholar] [CrossRef]
- Wan, Y.J.; Gong, L.X. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos. Part A Appl. Sci. Manuf. 2014, 64, 79–89. [Google Scholar] [CrossRef]
- Guo, J.; Ren, L. Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite. Compos. Part B Eng. 2011, 42, 2130–2135. [Google Scholar] [CrossRef]
- Liu, M.; Li, M. Thermal properties of PA6 nanocomposites by addition of graphene non-covalently functionalized with dendronized polyamide. J. Therm. Anal. Calorim. 2015, 120, 1303–1310. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 11, 6156–6214. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.T.; Hong, C.Y. Surface modification of carbon nanotubes with dendrimers or hyperbranched polymers. Polym. Chem. 2011, 2, 998–1007. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials; ASTM D5045-99; ASTM International: West Conshohocken, PA, USA, 1999. [Google Scholar]
- Kinloch, A.J. Adhesion and Adhesives: Science and Technology; Chapman & Hall: London, UK, 1987; pp. 209–237. [Google Scholar]
- Schrader, M.E. Young-Dupre Revisited. Langmuir 1995, 11, 3585–3589. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Weldon, D.G. Failure Analysis of Paints and Coatings; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Fowkes, F.M. Attractive forces at interfaces. Ind. Eng. Chem. Res. 1964, 12, 40–52. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Thostenson, E.T.; Chou, T.W. On the elastic properties of carbon nanotube-based composites: Modelling and characterization. J. Phys. D Appl. Phys. 2003, 5, 573–582. [Google Scholar] [CrossRef]
- Xiao, C.; Tan, Y.; Yang, X. Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2, particles and multi-walled carbon nanotubes. Chem. Phys. Lett. 2018, 695, 34–43. [Google Scholar] [CrossRef]
- Wang, X.; Xing, W.; Zhang, P. Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos. Sci. Technol. 2012, 72, 737–743. [Google Scholar] [CrossRef]
- Bortz, D.R.; Heras, E.G. Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites. Macromolecules 2012, 45, 238–245. [Google Scholar] [CrossRef]
- Wang, L.L.; Tan, Y.F. Mechanical and Fracture Properties of Hyperbranched Polymer Covalent Functionalized Multiwalled Carbon Nanotube-Reinforced Epoxy Composites. Chem. Phys. Lett. 2018, 18. [Google Scholar] [CrossRef]
- Feng, H.; Ma, W. Core/shell-structured hyperbranched aromatic polyamide functionalized graphene nanosheets-poly(p-phenylene benzobisoxazole) nanocomposite films with improved dielectric properties and thermostability. J. Mater. Chem. A 2017, 5, 8705–8713. [Google Scholar] [CrossRef]
- Ahmadi, M.B.; Sharafimasooleh, M. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater. Des. 2015, 66, 142–149. [Google Scholar] [CrossRef]
Series | Matrix (phr) | GO (phr) | HBP-GO (phr) |
---|---|---|---|
EP | 100 | - | - |
GO/EP | 100 | 0.3 | - |
100 | 0.5 | - | |
100 | 0.7 | - | |
100 | 0.9 | - | |
HBP-GO/EP | 100 | - | 0.3 |
100 | - | 0.5 | |
100 | - | 0.7 | |
100 | - | 0.9 |
Contact Angles (°) | Surface Energy (mJ/m2) | ||||
---|---|---|---|---|---|
Glycerol | Water | γSp | γSd | γS | |
GO | 46.2 | 70.5 | 6.55 | 41.86 | 48.41 |
HBP-GO | 26.8 | 59.6 | 9.67 | 49.98 | 59.65 |
GO | HBP-GO | |
---|---|---|
Contact angle (°) | 61.6 ± 1.0 | 56.7 ± 0.7 |
Interfacial energy (mJ/m2) | 28.91 | 37.14 |
Adhesion work (mJ/m2) | 60.50 | 63.51 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Xu, T.; Tan, Y.; Zhang, Z.; Tang, B.; Sun, Z. Effects of Non-Covalent Functionalized Graphene Oxide with Hyperbranched Polyesters on Mechanical Properties and Mechanism of Epoxy Composites. Materials 2019, 12, 3103. https://doi.org/10.3390/ma12193103
Tian J, Xu T, Tan Y, Zhang Z, Tang B, Sun Z. Effects of Non-Covalent Functionalized Graphene Oxide with Hyperbranched Polyesters on Mechanical Properties and Mechanism of Epoxy Composites. Materials. 2019; 12(19):3103. https://doi.org/10.3390/ma12193103
Chicago/Turabian StyleTian, Jin, Ting Xu, Yefa Tan, Zhongwei Zhang, Binghui Tang, and Zhidan Sun. 2019. "Effects of Non-Covalent Functionalized Graphene Oxide with Hyperbranched Polyesters on Mechanical Properties and Mechanism of Epoxy Composites" Materials 12, no. 19: 3103. https://doi.org/10.3390/ma12193103
APA StyleTian, J., Xu, T., Tan, Y., Zhang, Z., Tang, B., & Sun, Z. (2019). Effects of Non-Covalent Functionalized Graphene Oxide with Hyperbranched Polyesters on Mechanical Properties and Mechanism of Epoxy Composites. Materials, 12(19), 3103. https://doi.org/10.3390/ma12193103