Influence of Electrical Field Collector Positioning and Motion Scheme on Electrospun Bifurcated Vascular Graft Membranes
Abstract
:1. Introduction
1.1. Justification
1.2. Related Work
1.3. Objective
2. Materials and Methods
2.1. Fabrication Process
2.1.1. Positioning the Mechanism
2.1.2. Mandrel and Electrical Field Collector
2.1.3. Electrospinning Process
2.2. Characterization of Vascular Graft Membrane Morphology
2.2.1. Fiber Diameter and Alignment
2.2.2. Corner Profile Fidelity
2.2.3. Thickness Measurement
2.3. Characterization of Mechanical Properties
2.3.1. Burst Pressure Test
2.3.2. Suture Retention Strength
2.4. Cytotoxicity Assay
2.5. Statistical Analysis
3. Results
3.1. Fabrication Process
3.2. Characterization of Vascular Graft Membrane Morphology
3.2.1. Fiber Diameter and Alignment
3.2.2. Corner Profile Fidelity (FCP)
3.2.3. Membrane Thickness Distribution
3.3. Characterization of Mechanical Properties
3.3.1. Burst Pressure Strength
3.3.2. Suture Retention Strength (SRS)
3.4. Cytotoxicity Assay
3.5. Summary of Results
4. Discussion
4.1. Characterization of Vascular Graft Membrane Morphology
4.2. Characterization of Mechanical Properties
4.3. Relationship between Process Parameters and Vascular Functional Specifications.
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drews, J.D.; Miyachi, H.; Shinoka, T. Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status. Trends Cardiovasc. Med. 2017, 27, 521–531. [Google Scholar] [CrossRef]
- Best, C.; Strouse, R.; Hor, K.; Pepper, V.; Tipton, A.; Kelly, J.; Shinoka, T.; Breuer, C. Toward a patient-specific tissue engineered vascular graft. J. Tissue Eng. 2018, 9, 204173141876470. [Google Scholar] [CrossRef]
- Ma, H.; Hu, J.; Ma, P.X. Polymer Scaffolds for Small-Diameter Vascular Tissue Engineering. Adv. Funct. Mater. 2010, 20, 2833–2841. [Google Scholar] [CrossRef] [Green Version]
- Correa-Gallego, C.; Allen, P.J. Evolving Role of Drains, Tubes and Stents in Pancreatic Surgery. In Optimizing Outcomes for Liver and Pancreas Surgery; Rocha, F.G., Shen, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 159–169. ISBN 978-3-319-62624-6. [Google Scholar]
- Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J.M. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 2010, 95, 2126–2146. [Google Scholar] [CrossRef]
- Pashneh-Tala, S.; MacNeil, S.; Claeyssens, F. The Tissue-Engineered Vascular Graft—Past, Present, and Future. Tissue Eng. Part B Rev. 2015, 22, 68–100. [Google Scholar] [CrossRef]
- Onwuka, E.; King, N.; Heuer, E.; Breuer, C. The Heart and Great Vessels. Cold Spring Harb. Perspect. Med. 2018, 8, a031922. [Google Scholar] [CrossRef]
- Saunders, R.; Ramesh, J.; Cicconi, S.; Evans, J.; Yip, V.S.; Raraty, M.; Ghaneh, P.; Sutton, R.; Neoptolemos, J.P.; Halloran, C. A systematic review and meta-analysis of metal versus plastic stents for drainage of pancreatic fluid collections: metal stents are advantageous. Surg. Endosc. 2018. [Google Scholar] [CrossRef]
- Wu, J.; Hu, C.; Tang, Z.; Yu, Q.; Liu, X.; Chen, H. Tissue-engineered Vascular Grafts: Balance of the Four Major Requirements. Colloids Interface Sci. Commun. 2018, 23, 34–44. [Google Scholar] [CrossRef]
- Ong, C.S.; Zhou, X.; Huang, C.Y.; Fukunishi, T.; Zhang, H.; Hibino, N. Tissue engineered vascular grafts: current state of the field. Expert Rev. Med. Devices 2017, 14, 383–392. [Google Scholar] [CrossRef]
- Pham, Q.P.; Sharma, U.; Mikos, A.G. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006, 12, 1197–1211. [Google Scholar] [CrossRef]
- Baji, A.; Mai, Y.W.; Wong, S.C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 2010, 70, 703–718. [Google Scholar] [CrossRef]
- Łos, M.J.; Panigrahi, S.; Sielatycka, K.; Grillon, C. Successful Biomaterial-Based Artificial Organ—Updates on Artificial Blood Vessels. In Stem Cells and Biomaterials for Regenerative Medicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 203–222. ISBN 978-0-12-812258-7. [Google Scholar]
- Leach, M.K.; Feng, Z.-Q.; Tuck, S.J.; Corey, J.M. Electrospinning Fundamentals: Optimizing Solution and Apparatus Parameters. J. Vis. Exp. JoVE 2011. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2015, 11, 1165–1188. [Google Scholar] [CrossRef]
- Mo, X.; Sun, B.; Wu, T.; Li, D. Electrospun Nanofibers for Tissue Engineering. In Electrospinning: Nanofabrication and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 719–734. ISBN 978-0-323-51270-1. [Google Scholar]
- Fukunishi, T.; Best, C.A.; Sugiura, T.; Shoji, T.; Yi, T.; Udelsman, B.; Ohst, D.; Ong, C.S.; Zhang, H.; Shinoka, T.; et al. Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PLoS ONE 2016, 11, 1–15. [Google Scholar] [CrossRef]
- Ebersole, G.C.; Buettmann, E.G.; MacEwan, M.R.; Tang, M.E.; Frisella, M.M.; Matthews, B.D.; Deeken, C.R. Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications. Surg. Endosc. Interv. Tech. 2012, 26, 2717–2728. [Google Scholar] [CrossRef]
- Abdal-hay, A.; Bartnikowski, M.; Hamlet, S.; Ivanovski, S. Electrospun biphasic tubular scaffold with enhanced mechanical properties for vascular tissue engineering. Mater. Sci. Eng. C 2018, 82, 10–18. [Google Scholar] [CrossRef]
- Ye, L.; Wu, X.; Mu, Q.; Chen, B.; Duan, Y.; Geng, X.; Gu, Y.; Zhang, A.; Zhang, J.; Feng, Z. Heparin-Conjugated PCL Scaffolds Fabricated by Electrospinning and Loaded with Fibroblast Growth Factor 2. J. Biomater. Sci. Polym. Ed. 2011, 22, 389–406. [Google Scholar] [CrossRef]
- Wu, H.; Fan, J.; Chu, C.C.; Wu, J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J. Mater. Sci. Mater. Med. 2010, 21, 3207–3215. [Google Scholar] [CrossRef]
- Vaz, C.M.; van Tuijl, S.; Bouten, C.V.C.; Baaijens, F.P.T. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005, 1, 575–582. [Google Scholar] [CrossRef]
- Jin, S.; Liu, J.; Heang, S.; Soker, S.; Atala, A.; Yoo, J.J. Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 2008, 29, 2891–2898. [Google Scholar]
- Kim, S.; King, M.W. The Mechanical Performance of Weft- knitted / Electrospun Bilayer Small Diameter Vascular Prostheses. J. Mech. Behav. Biomed. Mater. 2016, 61, 410–418. [Google Scholar]
- Buxton, B.F.; Wukasch, D.C.; Martin, C.; Liebig, W.J.; Hallman, G.L.; Cooley, D.A. Practical considerations in fabric vascular grafts introduction of a new bifurcated graft. Am. J. Surg. 1973, 125, 288–293. [Google Scholar] [CrossRef]
- Kohler, C.; Attigah, N.; Demirel, S.; Zientara, A.; Weber, M.; Schwegler, I. A technique for a self-made bifurcated graft with bovine pericardial patch in infectious vascular reconstruction. J. Vasc. Surg. Cases Innov. Tech. 2016, 2, 158–160. [Google Scholar] [CrossRef] [Green Version]
- Siallagan, D.; Loke, Y.-H.; Olivieri, L.; Opfermann, J.; Ong, C.S.; de Zélicourt, D.; Petrou, A.; Daners, M.S.; Kurtcuoglu, V.; Meboldt, M.; et al. Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics. J. Thorac. Cardiovasc. Surg. 2018, 155, 1734–1742. [Google Scholar] [CrossRef]
- Tejeda-alejandre, R.; Lara-padilla, H.; Rodriguez, C.A.; Dean, D. Three dimensional printing modality combining fused deposition modeling and electrospinning. International Patent Application No. WO/2018/170328, 20 September 2018. [Google Scholar]
- Tejeda-Alejandre, R.; Lara-Padilla, H.; Mendoza-Buenrostro, C.; Rodriguez, C.A.; Dean, D. Electrospinning Complexly-shaped, Resorbable, Bifurcated Vascular Grafts. Procedia CIRP 2017, 65, 207–212. [Google Scholar] [CrossRef]
- Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754. [Google Scholar] [CrossRef]
- Cipitria, A.; Skelton, A.; Dargaville, T.R.; Dalton, P.D.; Hutmacher, D.W. Design, fabrication and characterization of PCL electrospun scaffolds—a review. J. Mater. Chem. 2011, 21, 9419. [Google Scholar] [CrossRef]
- Pensalfini, M.; Meneghello, S.; Lintas, V.; Bircher, K.; Ehret, A.E.; Mazza, E. The suture retention test, revisited and revised. J. Mech. Behav. Biomed. Mater. 2018, 77, 711–717. [Google Scholar] [CrossRef]
- Drilling, S.; Gaumer, J.; Lannutti, J. Fabrication of burst pressure competent vascular grafts via electrospinning: Effects of microstructure. J. Biomed. Mater. Res. Part A 2008, 88, 923–934. [Google Scholar] [CrossRef]
- Billiar, K.; Murray, J.; Laude, D.; Abraham, G.; Bachrach, N. Effects of carbodiimide crosslinking conditions on the physical properties of laminated intestinal submucosa. J. Biomed. Mater. Res. 2001, 56, 101–108. [Google Scholar] [CrossRef]
- Mangiavillano, B.; Pagano, N.; Baron, T.H.; Arena, M.; Iabichino, G.; Consolo, P.; Opocher, E.; Luigiano, C. Biliary and pancreatic stenting: Devices and insertion techniques in therapeutic endoscopic retrograde cholangiopancreatography and endoscopic ultrasonography. World J. Gastrointest. Endosc. 2016, 8, 143–156. [Google Scholar] [CrossRef]
- Yalcin, I.; Horakova, J.; Mikes, P.; Sadikoglu, T.G.; Domin, R.; Lukas, D. Design of Polycaprolactone Vascular Grafts. J. Ind. Text. 2016, 45, 813–833. [Google Scholar] [CrossRef]
- Radakovic, D.; Reboredo, J.; Helm, M.; Weigel, T.; Schürlein, S.; Kupczyk, E.; Leyh, R.G.; Walles, H.; Hansmann, J. A multilayered electrospun graft as vascular access for hemodialysis. PLoS ONE 2017, 12, 1–22. [Google Scholar] [CrossRef]
Morphology | Mechanical Properties | Reference | |||
---|---|---|---|---|---|
Vascular Graft Membrane Shape | Membrane Thickness [Fiber Diameter] | Suture Retention Strength | Burst Pressure | ||
PCL | Tubular | 1.18 ± 0.08mm [150 ± 62 nm] | N/A | 2925 ± 600 mmHg | [17] |
PCL (12% PCL, 10 mL/h) | Tubular | 0.72 ± 0.07 mm [1.5 ± 0.2 μm] | 20 N | N/A | [18] |
PCL (10% PCL, 3.5 mL/h) | 0.91 ± 0.05 mm [1.0 ± 0.1 μm] | ||||
PU | Tubular | 295 ± 42 μm [300–600 nm] | 7.1 ± 1.2 N | 985 ± 75 mmHg | [19] |
PCL-PU-LT | 615 ± 35 μm | 36.2 ± 2.0 N | 3580 ± 125 mmHg | ||
PCL-PU-HT | 910 ± 25 μm | 45.4 ± 2.6 N | 4320 ± 115 mmHg | ||
PCL | Tubular | [<1μm] | N/A | 1550 ± 7.5 mmHg | [20] |
PCL/Heparin | [3.5μm] | 1560 ± 15 mmHg | |||
PCL | Tubular | 0.4 μm [300–500 nm] | N/A | N/A | [21] |
PLA/PCL | Tubular | 600 μm [600 ± 400 nm] | N/A | N/A | [22] |
PCL–collagen | Tubular | N/A [520 ± 14 nm] | 3.0 ± 1.1 N | 4915 ± 155 mmHg | [23] |
PLA/PLCL | Tubular | 0.33 ± 0.03 mm [N/A] | 20 N | 15,000–22,500 mmHg | [24] |
Factors | Experimental Group Name | |
---|---|---|
Collector | Motion Scheme | |
External | Rotational | BLSP_SC_R |
External | Rotational and Longitudinal | BLSP_SC_RL |
Internal | Rotational | BLSP_CC_R |
Internal | Rotational and Longitudinal | BLSP_CC_RL |
Experimental Group | Average Thickness per Region [tR] (μm) | |||||
---|---|---|---|---|---|---|
tR1 | tR2 | tR3 | tR4 | tR5 | tR6 | |
Internal Collector with Rotational Motion (BLSP_CC_R) | 140.54 ± 43.2 | 133.83 ± 46.83 | 142.21 ± 42.24 | 169.21 ± 41.78 | 92.13 ± 24.12 | 91.42 ± 23.08 |
Internal Collector with Rotational and Longitudinal Motion (BLSP_CC_RL) | 113.29 ± 34.2 | 135.58 ± 36.54 | 118.5 ± 31.62 | 106.46 ± 33.64 | 67.67 ± 19.9 | 66.38 ± 23.94 |
Motion Scheme | Corner Profile Fidelity FCP [%] +++ | Fiber Diameter d [nm] | Membrane Thickness t [µm] +++ | Burst Pressure Strength P [mmHg] +++ | Suture Retention Strength FSR [N] | |
---|---|---|---|---|---|---|
R5 | R6 | |||||
Internal Collector with Rotational Motion (BLSP_CC_R) | 33.22 ± 0.03 | 31.6 ± 0.05 | 276.8 ± 78.5 | 171.22 ± 26.09 | 4388.3 ± 1,027.2 | 1.04 ± 0.3 |
Internal Collector with Rot. and Long. Motion (BLSP_CC_RL) | 24.23 ± 0.03 | 25.89 ± 0.05 | 290.2 ± 104.6 | 119.58 ± 24.74 | 5126.6 ± 1074.6 | 0.83 ± 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejeda-Alejandre, R.; Lammel-Lindemann, J.A.; Lara-Padilla, H.; Dean, D.; Rodriguez, C.A. Influence of Electrical Field Collector Positioning and Motion Scheme on Electrospun Bifurcated Vascular Graft Membranes. Materials 2019, 12, 2123. https://doi.org/10.3390/ma12132123
Tejeda-Alejandre R, Lammel-Lindemann JA, Lara-Padilla H, Dean D, Rodriguez CA. Influence of Electrical Field Collector Positioning and Motion Scheme on Electrospun Bifurcated Vascular Graft Membranes. Materials. 2019; 12(13):2123. https://doi.org/10.3390/ma12132123
Chicago/Turabian StyleTejeda-Alejandre, Raquel, Jan A. Lammel-Lindemann, Hernan Lara-Padilla, David Dean, and Ciro A. Rodriguez. 2019. "Influence of Electrical Field Collector Positioning and Motion Scheme on Electrospun Bifurcated Vascular Graft Membranes" Materials 12, no. 13: 2123. https://doi.org/10.3390/ma12132123
APA StyleTejeda-Alejandre, R., Lammel-Lindemann, J. A., Lara-Padilla, H., Dean, D., & Rodriguez, C. A. (2019). Influence of Electrical Field Collector Positioning and Motion Scheme on Electrospun Bifurcated Vascular Graft Membranes. Materials, 12(13), 2123. https://doi.org/10.3390/ma12132123