Void Content, Tensile, Vibration and Acoustic Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Hybrid Composites
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of Composites
2.3. Characterization
2.3.1. Void Content
2.3.2. Tensile Testing
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Modal Analysis (Free Vibration Test)
2.3.5. Acoustic Properties
3. Results and Discussion
3.1. Void Content
3.2. Tensile Properties
3.3. Scanning Electron Microscopy (SEM)
3.4. Free Vibration
3.5. Acoustic Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdullah, A.H.; Azharia, A.; Salleh, F.M. Sound absorption coefficient of natural fibres hybrid reinforced polyester composites. J. Technol. 2015, 76, 31–36. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S.; Hassan, A.; Abdallah, E. Bi-layer hybrid biocomposites: Chemical resistant and physical properties. BioResources. 2012, 7, 2344–2355. [Google Scholar] [CrossRef]
- Hao, A.; Zhao, H.; Chen, J.Y. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos. Pt. B-Eng. 2013, 54, 44–51. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S.; Hassan, A.; Dungani, R.; Hadiyane, A. Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos. Pt. B-Eng. 2013, 45, 619–624. [Google Scholar] [CrossRef]
- Kwon, H.J.; Sunthornvarabhas, J.; Park, J.W. Tensile properties of kenaf fiber and corn husk flour reinforced poly (lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Compos. Pt. B-Eng. 2014, 56, 232–237. [Google Scholar] [CrossRef]
- Saba, N.; Paridah, M.T.; Jawaid, M. Mechanical properties of kenaf fibre reinforced polymer composite: A review. Constr. Build. Mater. 2015, 76, 87–96. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Sulong, A.B.; Radzi, M.K.F. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog. Nat. Sci. 2016, 26, 657–664. [Google Scholar] [CrossRef]
- Hanan, F.; Jawaid, M.; Paridah, M.T. Mechanical performance of oil palm/kenaf fiber-reinforced epoxy-based bilayer hybrid composites. J. Nat. Fibers 2018, 1–13. [Google Scholar] [CrossRef]
- Lim, Z.Y.; Putra, A.; Nor, M.J.M.; Yaakob, M.Y. Sound absorption performance of natural kenaf fibres. Appl. Acoust. 2018, 130, 107–114. [Google Scholar] [CrossRef]
- Yahya, M.N.; Sambu, M.; Latif, H.A.; Junaid, T.M. A study of Acoustics Performance on Natural Fiber Composite. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012013. [Google Scholar] [CrossRef]
- Rajesh, M.; Pitchaimani, J.; Rajini, N. Free Vibration Characteristics of Banana/Sisal Natural Fibers Reinforced Hybrid Polymer Composite Beam. Proc. Eng. 2016, 144, 1055–1059. [Google Scholar] [CrossRef] [Green Version]
- Yahaya, R.; Sapuan, S.; Jawaid, M.; Leman, Z.; Zainudin, E. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites. Mater. Des. 2015, 67, 173–179. [Google Scholar] [CrossRef]
- Albuquerque, D.A.; Joseph, K.; Carvalho, D.L.H.; Almeida, J.R.M. Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Compos. Sci. Technol. 2000, 60, 833–844. [Google Scholar] [CrossRef]
- Mariatti, J.; Nasir, M.; Ismail, H. Preliminary Studies of Woven Thermoplastic Composites. Master’s Thesis, Universiti Sains Malaysia, Pulau Pinang, Malaysia, 1998. [Google Scholar]
- Jawaid, M.; Abdul Khalil, H.P.S.; Bakar, A.A.; Khanam, P.N. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater. Des. 2011, 32, 1014–1019. [Google Scholar] [CrossRef]
- Zweben, C. Tensile strength of hybrid composites. J. Mater. Sci. 1977, 12, 1325–1337. [Google Scholar] [CrossRef]
- Sreekala, M.; George, J.; Kumaran, M.; Thomas, S. The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos. Sci. Technol. 2002, 62, 339–353. [Google Scholar] [CrossRef]
- Boopalan, M.; Niranjanaa, M.; Umapathy, M.J. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos. Pt. B-Eng. 2013, 51, 54–57. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; ElayaPerumal, A.; Alavudeen, A.; Thiruchitrambalam, M. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater. Des. 2011, 32, 4017–4021. [Google Scholar] [CrossRef]
- Zainudin, E.S.; Yan, L.H.; Haniffah, W.H.; Jawaid, M.; Alothman, O.Y. Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym. Comp. 2014, 35, 1418–1425. [Google Scholar] [CrossRef]
- Yong, C.K.; Ching, Y.C.; Chuah, C.H.; Liou, N.S. Effect of fiber orientation on mechanical properties of kenaf-reinforced polymer composite. BioResources 2015, 10, 2597–2608. [Google Scholar] [CrossRef]
- Sathishkumar, T.; Naveen, J.; Navaneethakrishnan, P.; Satheeshkumar, S.; Rajini, N. Characterization of sisal/cotton fibre woven mat reinforced polymer hybrid composites. J. Ind. Text. 2017, 47, 429–452. [Google Scholar] [CrossRef]
- Chandradass, J.; Kumar, M.R.; Velmurugan, R. Effect of nanoclay addition on vibration properties of glass fibre reinforced vinyl ester composites. Mater. Lett. 2007, 61, 4385–4388. [Google Scholar] [CrossRef]
- Kumar, K.S.; Siva, I.; Rajini, N.; Jappes, J.W.; Amico, S. Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites. Mater. Des. 2016, 90, 795–803. [Google Scholar] [CrossRef]
- Sathishkumar, T.; Naveen, J.; Satheeshkumar, S. Hybrid fiber reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 454–471. [Google Scholar] [CrossRef]
- Bakri, M.K.B.; Jayamani, E.; Heng, S.K.; Hamdan, S. Reinforced Oil Palm Fiber Epoxy Composites: An Investigation on Chemical Treatment of Fibers on Acoustical, Morphological, Mechanical and Spectral Properties. Mater. Today. Proc. 2015, 2, 2747–2756. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y. Sound absorption performance of natural fibers and their composites. Sci. China Technol. Sci. 2012, 55, 2278–2283. [Google Scholar] [CrossRef]
- Zhou, H.; Li, B.; Huang, G. Sound absorption characteristics of polymer microparticles. J. Appl. Polym. Sci. 2006, 101, 2675–2679. [Google Scholar] [CrossRef]
- Koizumi, T.; Tsujiuchi, N.; Adachi, A. The development of sound absorbing materials using natural bamboo fibers. WIT Trans. Built Environ. 2002, 59. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Epoxide Equivalent Weight (g/eq) | 182–192 |
Epoxide Percentage (%) | 22.4–23.6 |
Epoxide Group Content (mmol/kg) | 5200–5500 |
Color (Platinum Cobalt) | 75 Max. |
Viscosity @ 25 °C (mPa·s) | 11,000–14,000 |
Hydrolyzable Chloride Content (ppm) | 500 Max. |
Water Content (ppm) | 700 Max. |
Density @ 25 °C (g/mL) | 1.16 |
Epichlorohydrin Content (ppm) | 5 Max. |
Shelf Life (Months) | 24 |
Property | Value |
---|---|
Amine value (mg KOH/g) | 300 ± 20 |
Viscosity (BH type @ 25 °C, cPs) | 200–400 |
Color (Gardner) | <2 |
Equivalent Wt (H) | 95 |
Pot life (100 g @ 25 °C) | 75 min |
Hardness (Shore D) | 85 |
Thin film set time (@ 25 °C) | 5 h |
Code | Density g/cm3 | Ratio of Kenaf to Bamboo (Kenaf/Bamboo) | |
---|---|---|---|
Kenaf (K) | Bamboo (B) | ||
K | 1.0750 | 100 | 0 |
3B7K | 1.1475 | 70 | 30 |
BK | 1.1450 | 50 | 50 |
7B3K | 1.1525 | 30 | 70 |
B | 1.1825 | 0 | 100 |
Type of Composites | Void Content (%) |
---|---|
K | 7.56 |
7B3K | 4.74 |
BK | 5.59 |
3B7K | 3.20 |
B | 4.37 |
Sample Name | Natural Frequency (Hz) | ||
---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | |
K | 65.92 | 131.84 | 283.2 |
B | 65.92 | 158.69 | 319.82 |
BK | 68.3 | 153.81 | 327.15 |
3B7K | 78.13 | 456.54 | 588.38 |
7B3K | 75.68 | 456.54 | 585.94 |
Sample Name | Damping Factor | ||
---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | |
K | 0.1841 | 0.0266 | 0.0206 |
B | 0.0781 | 0.0113 | 0.0088 |
BK | 0.0791 | 0.0410 | 0.0191 |
3B7K | 0.2853 | 0.1360 | 0.0675 |
7B3K | 0.0928 | 0.0471 | 0.0222 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, A.S.; Jawaid, M.; Naveen, J. Void Content, Tensile, Vibration and Acoustic Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Hybrid Composites. Materials 2019, 12, 2094. https://doi.org/10.3390/ma12132094
Ismail AS, Jawaid M, Naveen J. Void Content, Tensile, Vibration and Acoustic Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Hybrid Composites. Materials. 2019; 12(13):2094. https://doi.org/10.3390/ma12132094
Chicago/Turabian StyleIsmail, Ahmad Safwan, Mohammad Jawaid, and Jesuarockiam Naveen. 2019. "Void Content, Tensile, Vibration and Acoustic Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Hybrid Composites" Materials 12, no. 13: 2094. https://doi.org/10.3390/ma12132094
APA StyleIsmail, A. S., Jawaid, M., & Naveen, J. (2019). Void Content, Tensile, Vibration and Acoustic Properties of Kenaf/Bamboo Fiber Reinforced Epoxy Hybrid Composites. Materials, 12(13), 2094. https://doi.org/10.3390/ma12132094