Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. FRCP Cementation Procedure
2.3. Artificial Aging Procedure
2.4. SEM Analysis
2.5. Push-Out Bond Strength Evaluation
2.6. Microscopic Evaluation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The silanization of the surface of FRCP before cementation with resin luting cement significantly improved push-out bond strength.
- Mechanical treatment with hydrofluoric acid prior to the silanization or application of adhesive bonding agent alone to the FRCP surfaces did not significantly improve ret ntion.
- The self-etching ceramic primer did not significantly improve push-out bond strength.
- Cohesive failure of luting material was found most frequently in all groups.
- A significant difference was found in terms of the mean push-out bond strength between the coronal and apical areas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwartz, R.S.; Robbins, J.W. Post placement and restoration of endodontically treated teeth: A literature review. J. Endod. 2004, 30, 289–301. [Google Scholar] [CrossRef]
- Duret, B.; Reynaud, M.; Duret, F. New concept of coronoradicular reconstruction: The Composipost (1). Chir. Dent. Fr. 1990, 60, 131–141. [Google Scholar]
- Asmussen, E.; Peutzfeldt, A.; Heitmann, T. Stiffness, elastic limit, and strength of newer types of endodontic posts. J. Dent. 1999, 27, 275–278. [Google Scholar] [CrossRef]
- Barjau-Escribano, A.; Sancho-Bru, J.L.; Forner-Navarro, L.; Rodriguez-Cervantes, P.J.; Perez-Gonzalez, A.; Sanchez-Marin, F.T. Influence of prefabricated post material on restored teeth: Fracture strength and stress distribution. Oper. Dent. 2006, 31, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Vichi, A.; Garcia-Godoy, F. Clinical evaluation of fiber-reinforced epoxy resin posts and cast post and cores. Am. J. Dent. 2000, 13, 15B–18B. [Google Scholar] [PubMed]
- Tay, F.R.; Pashley, D.H. Monoblocks in root canals: A hypothetical or a tangible goal. J. Endod. 2007, 33, 391–398. [Google Scholar] [CrossRef]
- Lassila, L.V.; Tanner, J.; Le Bell, A.M.; Narva, K.; Vallittu, P.K. Flexural properties of fiber reinforced root canal posts. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2004, 20, 29–36. [Google Scholar] [CrossRef]
- Mallmann, A.; Jacques, L.B.; Valandro, L.F.; Muench, A. Microtensile bond strength of photoactivated and autopolymerized adhesive systems to root dentin using translucent and opaque fiber-reinforced composite posts. J. Prosthet. Dent. 2007, 97, 165–172. [Google Scholar] [CrossRef]
- Bachicha, W.S.; DiFiore, P.M.; Miller, D.A.; Lautenschlager, E.P.; Pashley, D.H. Microleakage of endodontically treated teeth restored with posts. J. Endod. 1998, 24, 703–708. [Google Scholar] [CrossRef]
- Monticelli, F.; Grandini, S.; Goracci, C.; Ferrari, M. Clinical behavior of translucent-fiber posts: A 2-year prospective study. Int. J. Prosthodont. 2003, 16, 593–596. [Google Scholar]
- Balbosh, A.; Kern, M. Effect of surface treatment on retention of glass-fiber endodontic posts. J. Prosthet. Dent. 2006, 95, 218–223. [Google Scholar] [CrossRef]
- Le Bell, A.M.; Tanner, J.; Lassila, L.V.; Kangasniemi, I.; Vallittu, P. Bonding of composite resin luting cement to fiber-reinforced composite root canal posts. J. Adhes. Dent. 2004, 6, 319–325. [Google Scholar]
- Bitter, K.; Meyer-Lueckel, H.; Priehn, K.; Kanjuparambil, J.P.; Neumann, K.; Kielbassa, A.M. Effects of luting agent and thermocycling on bond strengths to root canal dentine. Int. Endod. J. 2006, 39, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Sahafi, A.; Peutzfeld, A.; Asmussen, E.; Gotfredsen, K. Effect of surface treatment of prefabricated posts on bonding of resin cement. Oper. Dent. 2004, 29, 60–68. [Google Scholar] [PubMed]
- Bouillaguet, S.; Troesch, S.; Wataha, J.C.; Krejci, I.; Meyer, J.M.; Pashley, D.H. Microtensile bond strength between adhesive cements and root canal dentin. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2003, 19, 199–205. [Google Scholar] [CrossRef]
- Vano, M.; Cury, A.H.; Goracci, C.; Chieffi, N.; Gabriele, M.; Tay, F.R.; Ferrari, M. The effect of immediate versus delayed cementation on the retention of different types of fiber post in canals obturated using a eugenol sealer. J. Endod. 2006, 32, 882–885. [Google Scholar] [CrossRef]
- Monticelli, F.; Ferrari, M.; Toledano, M. Cement system and surface treatment selection for fiber post luting. Med. Oral Patol. Oral Y Cir. Bucal 2008, 13, E214–E221. [Google Scholar]
- Choi, Y.; Pae, A.; Park, E.J.; Wright, R.F. The effect of surface treatment of fiber-reinforced posts on adhesion of a resin-based luting agent. J. Prosthet. Dent. 2010, 103, 362–368. [Google Scholar] [CrossRef]
- Varela, S.G.; Rabade, L.B.; Lombardero, P.R.; Sixto, J.M.; Bahillo, J.D.; Park, S.A. In vitro study of endodontic post cementation protocols that use resin cements. J. Prosthet. Dent. 2003, 89, 146–153. [Google Scholar] [CrossRef]
- Perdigao, J.; Gomes, G.; Lee, I.K. The effect of silane on the bond strengths of fiber posts. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006, 22, 752–758. [Google Scholar] [CrossRef]
- Goracci, C.; Raffaelli, O.; Monticelli, F.; Balleri, B.; Bertelli, E.; Ferrari, M. The adhesion between prefabricated FRC posts and composite resin cores: Microtensile bond strength with and without post-silanization. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2005, 21, 437–444. [Google Scholar] [CrossRef]
- Tian, T.; Tsoi, J.K.; Matinlinna, J.P.; Burrow, M.F. Aspects of bonding between resin luting cements and glass ceramic materials. Dent. Mater. 2014, 30, e147–e162. [Google Scholar] [CrossRef]
- El-Damanhoury, H.M.; Gaintantzopoulou, M.D. Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J. Prosthodont. Res. 2018, 62, 75–83. [Google Scholar] [CrossRef]
- Pereira, J.R.; Lins do Valle, A.; Ghizoni, J.S.; Lorenzoni, F.C.; Ramos, M.B.; Dos Reis So, M.V. Push-out bond strengths of different dental cements used to cement glass fiber posts. J. Prosthet. Dent. 2013, 110, 134–140. [Google Scholar] [CrossRef]
- Sadek, F.T.; Goracci, C.; Monticelli, F.; Grandini, S.; Cury, A.H.; Tay, F.; Ferrari, M. Immediate and 24-hour evaluation of the interfacial strengths of fiber posts. J. Endod. 2006, 32, 1174–1177. [Google Scholar] [CrossRef]
- Mumcu, E.; Erdemir, U.; Topcu, F.T. Comparison of micro push-out bond strengths of two fiber posts luted using simplified adhesive approaches. Dent. Mater. J. 2010, 29, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.D.; Lee, J.H.; Ahn, K.M.; Kim, H.S.; Cha, H.S. Effect of silane activation on shear bond strength of fiber-reinforced composite post to resin cement. J. Adv. Prosthodont. 2013, 5, 104–109. [Google Scholar] [CrossRef][Green Version]
- Goracci, C.; Ferrari, M. Current perspectives on post systems: A literature review. Aust. Dent. J. 2011, 56 (Suppl. 1), 77–83. [Google Scholar] [CrossRef]
- Sahafi, A.; Peutzfeldt, A.; Asmussen, E.; Gotfredsen, K. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia. J. Adhes. Dent. 2003, 5, 153–162. [Google Scholar] [PubMed]
- Lung, C.Y.K.; Matinlinna, J.P. Silanes for adhesion promotion and surface modification. In Silane: Chemistry, Applications and Performance; Moriguchi, K., Utagawa, S., Eds.; Nova Science Publishers: New York, NY, USA, 2013; pp. 87–109. [Google Scholar]
- Aksornmuang, J.; Foxton, R.M.; Nakajima, M.; Tagami, J. Microtensile bond strength of a dual-cure resin core material to glass and quartz fibre posts. J. Dent. 2004, 32, 443–450. [Google Scholar] [CrossRef]
- Lung, C.Y.K.; Matinlinna, J.P. Resin bonding to silicatized zirconia with two isocyanatosilanes and a cross-linking silanes. Part II; mechanistic approach. Silicon 2010, 2, 163–169. [Google Scholar] [CrossRef]
- Pape, P.G.; Plueddemann, E.P. Methods for improving the performance of silane coupling agents. J. Adhes. Sci. Technol. 1991, 5, 831–842. [Google Scholar] [CrossRef]
- Park, S.J.; Jin, J.S. Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J. Colloid Interface Sci. 2001, 242, 174–179. [Google Scholar] [CrossRef]
- Goracci, C.; Tavares, A.U.; Fabianelli, A.; Monticelli, F.; Raffaelli, O.; Cardoso, P.C.; Tay, F.; Ferrari, M. The adhesion between fiber posts and root canal walls: Comparison between microtensile and push-out bond strength measurements. Eur. J. Oral Sci. 2004, 112, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.M.; Lassila, L.V.; Kangasniemi, I.; Vallittu, P.K. Bonding of fibre-reinforced composite post to root canal dentin. J. Dent. 2005, 33, 533–539. [Google Scholar] [CrossRef]
- Goracci, C.; Fabianelli, A.; Sadek, F.T.; Papacchini, F.; Tay, F.R.; Ferrari, M. The contribution of friction to the dislocation resistance of bonded fiber posts. J. Endod. 2005, 31, 608–612. [Google Scholar] [CrossRef]
- Vano, M.; Goracci, C.; Monticelli, F.; Tognini, F.; Gabriele, M.; Tay, F.R.; Ferrari, M. The adhesion between fibre posts and composite resin cores: The evaluation of microtensile bond strength following various surface chemical treatments to posts. Int. Endod. J. 2006, 39, 31–39. [Google Scholar] [CrossRef]
- Pereira, J.R.; Rosa, R.A.; So, M.V.; Afonso, D.; Kuga, M.C.; Honorio, H.M.; Valle, A.L.; Vidotti, H.A. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements. J. Appl. Oral Sci. Rev. FOB 2014, 22, 390–396. [Google Scholar] [CrossRef]
- Park, J.S.; Lee, J.S.; Park, J.W.; Chung, W.G.; Choi, E.H.; Lee, Y. Comparison of push-out bond strength of fiber-reinforced composite resin posts according to cement thickness. J. Prosthet. Dent. 2017, 118, 372–378. [Google Scholar] [CrossRef]
- Ferrari, M.; Vichi, A.; Grandini, S. Efficacy of different adhesive techniques on bonding to root canal walls: An SEM investigation. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2001, 17, 422–429. [Google Scholar] [CrossRef]
- Vichi, A.; Vano, M.; Ferrari, M. The effect of different storage conditions and duration on the fracture strength of three types of translucent fiber posts. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2008, 24, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Takahashi, Y.; Hisama, K.; Shimizu, H. Water sorption and dimensional stability of three glass fiber-reinforced composites. Int. J. Prosthodont. 2004, 17, 195–199. [Google Scholar]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.; Jedynakiewicz, N. Measurement of water sorption in dental composites. Biomaterials 1998, 19, 77–83. [Google Scholar] [CrossRef]
- García-Moreno, I.; Caminero, M.Á.; Rodríguez, G.P.; López-Cela, J.J. Effect of thermal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminates. Polymers 2019, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, I.; Caminero M, Á.; Rodríguez, G.P.; López-Cela, J.J. Effect of thermal ageing on the impact damage resistance and tolerance of carbon fibre-reinforced epoxy laminates. Polymers 2019, 11, 160. [Google Scholar] [CrossRef] [PubMed]
Source | Sum of Squares | df | Mean Square | F | Sig |
---|---|---|---|---|---|
Corrected model | 223.012 a | 7 | 31.859 | 3.466 | 0.003 |
Intercept | 26844.479 | 1 | 26844.479 | 2920.553 | 0.000 |
Post surface treatment | 146.003 | 3 | 48.668 | 5.295 | 0.002 * |
Post location | 43.086 | 1 | 43.086 | 4.688 | 0.034 * |
Treatment * location | 33.923 | 3 | 11.308 | 1.230 | 0.305 |
Error | 661.793 | 72 | 9.192 | ||
Total | 27729.284 | 80 | |||
Corrected total | 884.805 | 79 |
Source | Sum of Squares | df | Mean Square | F | Sig |
---|---|---|---|---|---|
Corrected model | 27.985 a | 7 | 3.998 | 29.206 | 0.000 |
Intercept | 413.890 | 1 | 413.890 | 3023.646 | 0.000 |
Post surface treatment | 1.967 | 3 | 0.656 | 4.790 | 0.004 * |
Post location | 25.673 | 1 | 25.673 | 187.552 | 0.000 * |
Treatment * location | 0.345 | 3 | 0.115 | 0.840 | 0.476 |
Error | 9.856 | 72 | 0.137 | ||
Total | 451.731 | 80 | |||
Corrected total | 37.841 | 79 |
Variable | Debonding Force (N) | Push-out Strength (MPa) | Significance | |||
---|---|---|---|---|---|---|
Post Surface | Location | Mean | SD | Mean | SD | |
Group 1 (DB) | Apical | 16.85 | ±2.19 | 2.72 | ±0.35 | A |
Coronal | 16.14 | ±3.54 | 1.44 | ±0.31 | ||
Total | 16.49 | ±2.89 | 2.08 | ±0.73 | ||
Group 2 (silane+DB) | Apical | 18.82 | ±2.09 | 3.04 | ±0.33 | B |
Coronal | 20.58 | ±3.69 | 1.84 | ±0.33 | ||
Total | 19.70 | ±3.06 | 2.44 | ±0.69 | ||
Group 3 (HF+silane+DB) | Apical | 18.47 | ±2.68 | 2.98 | ±0.43 | B |
Coronal | 20.58 | ±2.42 | 1.84 | ±0.21 | ||
Total | 19.52 | ±2.71 | 2.41 | ±0.67 | ||
Group 4 (self-etching primer) | Apical | 16.19 | ±3.39 | 2.61 | ±0.54 | A |
Coronal | 18.90 | ±3.67 | 1.69 | ±0.32 | ||
Total | 17.54 | ±3.71 | 2.15 | ±0.64 | ||
Total | Apical | 17.58 | ±2.77 | 2.84 | ±0.44 | ¢ |
Coronal | 19.05 | ±3.72 | 1.70 | ±0.33 | § |
Variable | Failure Mode | Total | |||||
---|---|---|---|---|---|---|---|
Post Surface | Location | 1 | 2 | 3 | 4 | 5 | |
Group 1 (DB) | Apical | 2 (20) | 2 (20) | 4 (40) | 2 (20) | 10 (100) | |
Coronal | 1 (10) | 2 (20) | 5 (50) | 2 (20) | 10 (100) | ||
Total | 3 (15) | 4 (20) | 9 (45) | 4 (20) | 20 (100) | ||
Group 2 (silane+DB) | Apical | 1 (10) | 2 (20) | 4 (40) | 3 (30) | 10 (100) | |
Coronal | 2 (20) | 1 (10) | 5 (50) | 2 (20) | 10 (100) | ||
Total | 1 (5) | 4 (20) | 1 (5) | 9 (45) | 5 (25) | 20 (100) | |
Group 3 (HF+silane+DB) | Apical | 4 (40) | 1 (10) | 3 (30) | 2 (20) | 10 (100) | |
Coronal | 1 (10) | 2 (20) | 2 (20) | 5 (50) | 10 (100) | ||
Total | 1 (5) | 6 (30) | 1 (5) | 5 (25) | 7 (35) | 20 (100) | |
Group 4 (self-etching primer) | Apical | 1 (10) | 2 (20) | 3 (30) | 4 (40) | 10 (100) | |
Coronal | 1 (10) | 5 (50) | 4 (40) | 10 (100) | |||
Total | 1 (5) | 3 (15) | 8 (40) | 8 (40) | 20 (100) | ||
All group | Apical | 4 (10) | 10 (25) | 1 (2.5) | 14 (35) | 11(27.5) | 40 (100) |
Coronal | 2 (5) | 7 (17.5) | 1 (2.5) | 17 (42.5) | 13(32.5) | 40 (100) | |
Total | 6 (7.5) | 17(21.25) | 2 (2.5) | 31(38.75) | 24 (30) | 80 (100) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, N.-S.; Jung, B.-Y.; Roh, B.-D.; Shin, Y. Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post. Materials 2019, 12, 1585. https://doi.org/10.3390/ma12101585
Pang N-S, Jung B-Y, Roh B-D, Shin Y. Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post. Materials. 2019; 12(10):1585. https://doi.org/10.3390/ma12101585
Chicago/Turabian StylePang, Nan-Sim, Bock-Young Jung, Byoung-Duck Roh, and Yooseok Shin. 2019. "Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post" Materials 12, no. 10: 1585. https://doi.org/10.3390/ma12101585
APA StylePang, N.-S., Jung, B.-Y., Roh, B.-D., & Shin, Y. (2019). Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post. Materials, 12(10), 1585. https://doi.org/10.3390/ma12101585