Pro-Degradant Activity of Naturally Occurring Compounds on Polyethylene in Accelerate Weathering Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- Low Density PolyEthylene, PE, (Riblene® FC30, from Versalis spa, Mantova, Italy), with Mw = 175.000 g mol−1, Mw/Mn = 5.76, melt flow index (ASTM D 1238) 0.27 dg/min, density 0.922 g/cm3, melting temperature 113 °C;
- -
- Octadecanoic acid calcium salt, named calcium stearate (Ca stearate), has been purchased by Sigma-Aldrich Chemie GmbH, Steinheim, Germany, 6.6–7.4% Ca basis.
- -
- 2,5,7,8-Tetramethyl-2-(4′,8′,12′-trimethyltridecyl)-6-chromanol,5,7,8-Trimethyltocol, named Vitamin E (VE), has been purchased by Sigma-Aldrich. Molecular Weight 430.71.
- -
- 4-Hydroxy-3-methoxycinnamic acid, named Ferulic Acid (FA), has been purchased by Sigma-Aldrich. Molecular Weight 194.18.
2.2. Processing
2.3. Characterizations
2.4. Accelerated Weathering
3. Results
3.1. Characterization of PE-Based Systems Containing Naturally Occurring Compounds
3.2. Pro-Oxidant Activity of Naturally Occurring Compounds in PE-Bases Systems in Accelerated Weathering Conditions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brandrup, J.; Bittner, M.; Michaeli, W.; Menges, G. Recycling and Recovery of Plastics; Hanser Publishers: Munich, Germany, 1996. [Google Scholar]
- Scott, G. Polymers and the Environment; Royal Society of Chemistry Publishing: London, UK, 1999. [Google Scholar]
- Sykes, G.; Skinner, F.A. Microbial Aspects of Pollution; Academic Press: London, UK, 1971. [Google Scholar]
- Smith, R. Biodegradable Polymers for Industrial Applications; Woodhead Publishing: Cambridge, UK, 2005. [Google Scholar]
- Albertsson, A.-C.; Barenstedt, C.; Karlsson, S.; Linberg, T. Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer 1995, 36, 3075–3083. [Google Scholar] [CrossRef]
- Bonhomme, S.; Cuer, A.; Delort, A.-M.; Lemaire, J.; Sancelme, M.; Scott, G. Environmental biodegradation of polyethylene. Polym. Degrd. Stab. 2003, 81, 441–452. [Google Scholar] [CrossRef]
- Wiles, D.; Scott, G. Polyolefins with controlled environmental degradability. Polym. Degrd. Stab. 2006, 91, 1581–1592. [Google Scholar] [CrossRef]
- Tidjani, A.; Wilkie, C.A. Photo-oxidation of polymeric-inorganic nanocomposites: Chemical, thermal stability and fire retardancy investigations. Polym. Degrad. Stab. 2001, 74, 33–37. [Google Scholar] [CrossRef]
- Oluz, Z.; Tincer, T. Additives for ultraviolet-induced oxidative degradation of low-density polyethylene. J. Appl. Polym. Sci. 2016, 43354. [Google Scholar] [CrossRef]
- Pablos, J.L.; Abrusci, C.; Marín, I.; López-Marín, J.; Catalina, F.; Espí, E.; Corrales, T. Photodegradation of polyethylenes: Comparative effect of Fe and Ca-stearates as pro-oxidant additives. Polym. Degrad. Stab. 2010, 95, 2057–2064. [Google Scholar] [CrossRef]
- Dintcheva, N.T.; Arrigo, R.; Baiamonte, M.; Rizzarelli, P.; Curcuruto, G. Concentration-dependent anti-/pro-oxidant activity of natural phenolic compounds in bio-polyesters. Polym. Degrad. Stab. 2017, 142, 21–28. [Google Scholar] [CrossRef]
- Arrigo, R.; Morici, E.; Dintcheva, N.T. Biopolyester-based systems containing naturally occurring compounds with enhanced thermooxidative stability. J. Appl. Biomater. Funct. Mater. 2016, 14, 455–462. [Google Scholar] [CrossRef]
- Dintcheva, N.T.; Baiamonte, M.; Spera, M. Assessment of pro-oxidant activity of natural phenolic compounds in bio-polyesters. Polym. Degrad. Stab. 2018, 152, 280–288. [Google Scholar] [CrossRef]
- Dintcheva, N.T.; Al-Malaika, S.; La Mantia, F.P. Effect of extrusion and photo-oxidation on polyethylene/clay nanocomposites. Polym. Degrad. Stab. 2009, 94, 1571–1588. [Google Scholar] [CrossRef]
- Rietjens, I.M.; Boersma, M.G.; Haan, L.D.; Spenkelink, B.; Awad, H.M.; Cnubben, N.H.P.; Van Zanden, J.J.; Van der Woude, H.; Alink, G.M.; Koeman, J.H. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 2002, 11, 321–333. [Google Scholar] [CrossRef]
E [MPa] | TS [MPa] | EB [%] | ΔHf, J/g | ΔHc, J/g | |
---|---|---|---|---|---|
PE | 215 ± 5 | 23.3 ± 1.5 | 578 ± 23 | 117 | −109 |
PE + 2 wt.% Ca stearate | 212 ± 6 | 22.7 ± 1.2 | 625 ± 25 | 109 | −93 |
PE + 3 wt.% Ca stearate | 207 ± 7 | 23.8 ± 1.3 | 661 ± 27 | 102 | −91 |
PE + 2 wt.% VE | 191 ± 5 | 23.2 ± 1.3 | 604 ± 21 | 105 | −98 |
PE + 3 wt.% VE | 177 ± 5 | 22.4 ± 1.2 | 626 ± 22 | 104 | −96 |
PE + 2 wt.% FA | 209 ± 6 | 24.5 ± 1.6 | 624 ± 23 | 106 | −97 |
PE + 3 wt.% FA | 211 ± 7 | 21.6 ± 1.3 | 642 ± 21 | 102 | −101 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dintcheva, N.T.; Gennaro, D.; Teresi, R.; Baiamonte, M. Pro-Degradant Activity of Naturally Occurring Compounds on Polyethylene in Accelerate Weathering Conditions. Materials 2019, 12, 195. https://doi.org/10.3390/ma12010195
Dintcheva NT, Gennaro D, Teresi R, Baiamonte M. Pro-Degradant Activity of Naturally Occurring Compounds on Polyethylene in Accelerate Weathering Conditions. Materials. 2019; 12(1):195. https://doi.org/10.3390/ma12010195
Chicago/Turabian StyleDintcheva, Nadka Tzankova, Delia Gennaro, Rosalia Teresi, and Marilena Baiamonte. 2019. "Pro-Degradant Activity of Naturally Occurring Compounds on Polyethylene in Accelerate Weathering Conditions" Materials 12, no. 1: 195. https://doi.org/10.3390/ma12010195
APA StyleDintcheva, N. T., Gennaro, D., Teresi, R., & Baiamonte, M. (2019). Pro-Degradant Activity of Naturally Occurring Compounds on Polyethylene in Accelerate Weathering Conditions. Materials, 12(1), 195. https://doi.org/10.3390/ma12010195