The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Homopolymers and Random Copolymers
2.3. Preparation of the Films
2.4. Characterization
3. Results
3.1. Formation of Breath Figures in Poly(x-chlorostyrene) Isomers and Polystyrene
3.2. Formation of Breath Figures with Poly(x-chlorostyrene-co-styrene) Copolymers
3.3. Formation of Breath Figures in Poly(x-chlorostyrene) Isomers and Polystyrene Blends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, N.; Li, J.; Ni, D.; Sun, K. Preparation of honeycomb porous La0.6Sr0.4Co0.2Fe0.8O3−δ–Gd0.2Ce0.8O2−δ composite cathodes by breath figures method for solid oxide fuel cells. Appl. Surf. Sci. 2011, 258, 50–57. [Google Scholar] [CrossRef]
- Li, J.; Zhang, N.; Ni, D.; Sun, K. Preparation of honeycomb porous solid oxide fuel cell cathodes by breath figures method. Int. J. Hydrogen Energy 2011, 36, 7641–7648. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, B.; Ren, Y.; Xiao, G.; Wang, X.; Li, C. Water-assisted formation of novel molecularly imprinted polymer membranes with ordered porous structure. Polymer (Guildf) 2007, 48, 6205–6209. [Google Scholar] [CrossRef]
- Mansouri, J.; Yapit, E.; Chen, V. Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach. J. Memb. Sci. 2013, 444, 237–251. [Google Scholar] [CrossRef]
- Sakatani, Y.; Boissière, C.; Grosso, D.; Nicole, L.; Soler-Illia, G.J.A.A.; Sanchez, C. Coupling Nanobuilding Block and Breath Figures Approaches for the Designed Construction of Hierarchically Templated Porous Materials and Membranes. Chem. Mater. 2008, 20, 1049–1056. [Google Scholar] [CrossRef]
- Wan, L.; Li, J.; Ke, B.; Xu, Z. Ordered Microporous Membranes Templated by Breath Figures for Size-Selective Separation. J. Am. Chem. Soc. 2012, 134, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Lv, C.; Yu, W.; Mao, Z.; Wan, L.; Xu, Z. Fabrication of Perforated Isoporous Membranes via a Transfer-Free Strategy: Enabling High-Resolution Separation of Cells. ACS Appl. Mater. Interfaces 2014, 6, 22400–22407. [Google Scholar] [CrossRef]
- Kon, K.; Brauer, C.N.; Hidaka, K.; Löhmannsröben, H.-G.; Karthaus, O. Preparation of patterned zinc oxide films by breath figure templating. Langmuir 2010, 26, 12173–12176. [Google Scholar] [CrossRef]
- De León, A.S.; Garnier, T.; Jierry, L.; Boulmedais, F.; Muñoz-Bonilla, A.; Rodríguez-Hernández, J. Enzymatic Catalysis Combining the Breath Figures and Layer-by-Layer Techniques: Toward the Design of Microreactors. ACS Appl. Mater. Interfaces 2015, 7, 12210–12219. [Google Scholar] [CrossRef]
- Chen, P.-C.; Wan, L.-S.; Ke, B.-B.; Xu, Z.-K. Honeycomb-patterned film segregated with phenylboronic acid for glucose sensing. Langmuir 2011, 27, 12597–12605. [Google Scholar] [CrossRef]
- Nishikawa, T.; Nishida, J.; Ookura, R.; Nishimura, S.I.; Wada, S.; Karino, T.; Shimomura, M. Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Mater. Sci. Eng. C 1999, 8–9, 495–500. [Google Scholar] [CrossRef]
- Tsuruma, A.; Tanaka, M.; Yamamoto, S.; Shimomura, M. Control of neural stem cell differentiation on honeycomb films. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313–314, 536–540. [Google Scholar] [CrossRef]
- Chen, S.; Gao, S.; Jing, J.; Lu, Q. Designing 3D Biological Surfaces via the Breath-Figure Method. Adv. Healthc. Mater. 2018, 7, 1701043. [Google Scholar] [CrossRef] [PubMed]
- Bunz, U.H.F. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 2006, 18, 973–989. [Google Scholar] [CrossRef]
- Song, L.; Bly, R.K.; Wilson, J.N.; Bakbak, S.; Park, J.O.; Srinivasarao, M.; Bunz, U.H.F. Facile Microstructuring of Organic Semiconducting Polymers by the Breath Figure Method: Hexagonally Ordered Bubble Arrays in Rigid Rod-Polymers. Adv. Mater. 2004, 16, 115–118. [Google Scholar] [CrossRef]
- Nishikawa, T.; Nonomura, M.; Arai, K.; Hayashi, J.; Sawadaishi, T.; Nishiura, Y.; Hara, M.; Shimomura, M. Micropatterns Based on Deformation of a Viscoelastic Honeycomb Mesh. Langmuir 2003, 19, 6193–6201. [Google Scholar] [CrossRef]
- Escalé, P.; Rubatat, L.; Billon, L.; Save, M. Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polym. J. 2012, 48, 1001–1025. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Guerrero, M.; Stenzel, M.H. Honeycomb structured polymer films via breath figures. Polym. Chem. 2012, 3, 563–577. [Google Scholar] [CrossRef]
- Chen, C.S. Geometric Control of Cell Life and Death. Science (80-.) 1997, 276, 1425–1428. [Google Scholar] [CrossRef]
- Flemming, R.G.; Murphy, C.J.; Abrams, G.A.; Goodman, S.L.; Nealey, P.F. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999, 20, 573–588. [Google Scholar] [CrossRef]
- Walboomers, X.F.; Croes, H.J.E.; Ginsel, L.A.; Jansen, J.A. Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials 1998, 19, 1861–1868. [Google Scholar] [CrossRef]
- Liu, X.; Liu, R.; Cao, B.; Ye, K.; Li, S.; Gu, Y.; Pan, Z.; Ding, J. Subcellular cell geometry on micropillars regulates stem cell differentiation. Biomaterials 2016, 111, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Sato, M.; Yabu, H.; Shimomura, M. Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs): Uniform porous polymer scaffolds prepared by the breath figure technique. Biomater. Sci. 2014, 2, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.; Connolly, P.; Curtis, A.S.; Dow, J.A.; Wilkinson, C.D. Cell guidance by ultrafine topography in vitro. J. Cell Sci. 1991, 99 Pt 1, 73–77. [Google Scholar]
- Abagnale, G.; Sechi, A.; Steger, M.; Zhou, Q.; Kuo, C.C.; Aydin, G.; Schalla, C.; Müller-Newen, G.; Zenke, M.; Costa, I.G.; et al. Surface Topography Guides Morphology and Spatial Patterning of Induced Pluripotent Stem Cell Colonies. Stem Cell Rep. 2017, 9, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, S. Regulating MC3T3-E1 Cells on Deformable Poly(ε-caprolactone) Honeycomb Films Prepared Using a Surfactant-Free Breath Figure Method in a Water-Miscible Solvent. ACS Appl. Mater. Interfaces 2012, 4, 4966–4975. [Google Scholar] [CrossRef]
- Yamamoto, S.; Tanaka, M.; Sunami, H.; Ito, E.; Yamashita, S.; Morita, Y.; Shimomura, M. Effect of honeycomb-patterned surface topography on the adhesion and signal transduction of porcine aortic endothelial cells. Langmuir 2007, 23, 8114–8120. [Google Scholar] [CrossRef]
- Fukuda, J.; Sakai, Y.; Nakazawa, K. Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 2006, 27, 1061–1070. [Google Scholar] [CrossRef]
- Cristallini, C.; Cibrario Rocchietti, E.; Accomasso, L.; Folino, A.; Gallina, C.; Muratori, L.; Pagliaro, P.; Rastaldo, R.; Raimondo, S.; Saviozzi, S.; et al. The effect of bioartificial constructs that mimic myocardial structure and biomechanical properties on stem cell commitment towards cardiac lineage. Biomaterials 2014, 35, 92–104. [Google Scholar] [CrossRef]
- Choi, H.; Tanaka, M.; Hiragun, T.; Hide, M.; Sugimoto, K. Non-tumor mast cells cultured in vitro on a honeycomb-like structured film proliferate with multinucleated formation. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 313–319. [Google Scholar] [CrossRef]
- Tanaka, M.; Nishikawa, K.; Okubo, H.; Kamachi, H.; Kawai, T.; Matsushita, M.; Todo, S.; Shimomura, M. Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film. Colloids Surf. A Physicochem. Eng. Asp. 2006, 284–285, 464–469. [Google Scholar] [CrossRef]
- Sunami, H.; Ito, E.; Tanaka, M.; Yamamoto, S.; Shimomura, M. Effect of honeycomb film on protein adsorption, cell adhesion and proliferation. Colloids Surf. A Physicochem. Eng. Asp. 2006, 284–285, 548–551. [Google Scholar] [CrossRef]
- Arai, K.; Tanaka, M.; Yamamoto, S.; Shimomura, M. Effect of pore size of honeycomb films on the morphology, adhesion and cytoskeletal organization of cardiac myocytes. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313–314, 530–535. [Google Scholar] [CrossRef]
- Tsuruma, A.; Tanaka, M.; Fukushima, N.; Shimomura, M. Morphological changes of neurons on self-organized honeycomb patterned films. Kobunshi Ronbunshu 2004, 61, 628–633. [Google Scholar] [CrossRef]
- Annabi, N.; Tsang, K.; Mithieux, S.M.; Nikkhah, M.; Ameri, A.; Khademhosseini, A.; Weiss, A.S. Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. Adv. Funct. Mater. 2013, 23, 4950–4959. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.D.; Long, R.L. Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions. J. Memb. Sci. 1997, 134, 1–17. [Google Scholar] [CrossRef]
- Broughton, J.; Davies, G.A. Porous cellular ceramic membranes: A stochastic model to describe the structure of an anodic oxide membrane. J. Memb. Sci. 1995, 106, 89–101. [Google Scholar] [CrossRef]
- Alinchenko, M.G.; Anikeenko, A.V.; Medvedev, N.N.; Voloshin, V.P.; Mezei, M.; Jedlovszky, P. Morphology of Voids in Molecular Systems. A Voronoi−Delaunay Analysis of a Simulated DMPC Membrane. J. Phys. Chem. B 2004, 108, 19056–19067. [Google Scholar] [CrossRef] [Green Version]
- Limaye, A.; Narhe, R.; Dhote, A.; Ogale, S. Evidence for Convective Effects in Breath Figure Formation on Volatile Fluid Surfaces. Phys. Rev. Lett. 1996, 76, 3762–3765. [Google Scholar] [CrossRef]
- Steyer, A.; Guenoun, P.; Beysens, D.; Knobler, C.M. Two-dimensional ordering during droplet growth on a liquid surface. Phys. Rev. B 1990, 42, 1086–1089. [Google Scholar] [CrossRef]
- Steyer, A.; Guenoun, P.; Beysens, D.; Review, P.; Steyer, A.; Guenoun, P.; Beysens, D. Hexatic and fat-fractal structures for water droplets condensing on oil. Phys. Rev. E 1993, 48, 428–431. [Google Scholar] [CrossRef]
- Choi, Y.W.; Lee, H.; Song, Y.; Sohn, D. Colloidal stability of iron oxide nanoparticles with multivalent polymer surfactants. J. Colloid Interface Sci. 2015, 443, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Sharma, V.; Park, J.O.; Srinivasarao, M. Characterization of ordered array of micropores in a polymer film. Soft Matter 2011, 7, 1890. [Google Scholar] [CrossRef]
- Lin, C.-L.; Tung, P.-H.; Chang, F.-C. Synthesis of rod-coil diblock copolymers by ATRP and their honeycomb morphologies formed by the ‘breath figures’ method. Polymer (Guildf) 2005, 46, 9304–9313. [Google Scholar] [CrossRef]
- Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014, 39, 510–554. [Google Scholar] [CrossRef] [Green Version]
- Khaledi, M.G.; Breyer, E.D. Quantitation of hydrophobicity with micellar liquid chromatography. Anal. Chem. 1989, 61, 1040–1047. [Google Scholar] [CrossRef]
- Sasaki, T.; Tanaka, S. Adsorption behavior of some aromatic compounds on hydrophobic magnetite for magnetic separation. J. Hazard. Mater. 2011, 196, 327–334. [Google Scholar] [CrossRef]
- De León, A.S.; Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J. Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 851–859. [Google Scholar] [CrossRef]
- S. de León, A.; del Campo, A.; Fernández-García, M.; Rodríguez-Hernández, J.; Muñoz-Bonilla, A.; Leo, A.S. De Fabrication of Structured Porous Films by Breath Figures and Phase Separation Processes: Tuning the Chemistry and Morphology Inside the Pores Using Click Chemistry. ACS Appl. Mater. Interfaces 2013, 5, 3943–3951. [Google Scholar] [CrossRef]
- Muñoz-Bonilla, A.; Ibarboure, E.; Papon, E.; Rodriguez-Hernandez, J. Self-Organized Hierarchical Structures in Polymer Surfaces: Self-Assembled Nanostructures within Breath Figures. Langmuir 2009, 25, 6493–6499. [Google Scholar] [CrossRef]
- De León, A.S.; Rodríguez-Hernández, J.; Cortajarena, A.L. Honeycomb patterned surfaces functionalized with polypeptide sequences for recognition and selective bacterial adhesion. Biomaterials 2013, 34, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Farbod, F.; Pourabbas, B.; Sharif, M. Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro-modified silica nanoparticles. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 441–451. [Google Scholar] [CrossRef]
- Alexandrovich, P.S.; Karasz, F.E.; Macknight, W.J. Dielectric study of polymer compatibility: Blends of polystyrene/poly-2-chlorostyrene. J. Macromol. Sci. Part B 1980, 17, 501–516. [Google Scholar] [CrossRef] [Green Version]
- Leffingwell, J.; Bueche, F. Molecular Motion in 2-Chlorostyrene-Styrene Copolymers from Dielectric Measurements. J. Appl. Phys. 1968, 39, 5910–5912. [Google Scholar] [CrossRef]
- Casalini, R.; Roland, C.M. Effect of Regioisomerism on the Local Dynamics of Polychlorostyrene. Macromolecules 2014, 47, 4087–4093. [Google Scholar] [CrossRef]
Sample | Mw (104) (g mol−1) | Mw/Mn |
---|---|---|
Polystyrene | 300 | 1.8 |
Poly(2-chlrostyrene) | 23.3 | 1.3 |
Poly(3-chlorostyrene) | 17.1 | 1.5 |
Poly(4-chlorostyrene) | 11.7 | 1.2 |
Sample | Mw (104) (g mol−1) | Mw/Mn | FS |
---|---|---|---|
Polystyrene | 300 | 1.80 | 1 |
Poly(2-chlrostyrene-co-styrene) | 11.3 | 1.9 | 0.526 |
Poly(3-chlorostyrene-co-styrene) | 11.2 | 1.6 | 0.608 |
Poly(4-chlorostyrene-co-styrene) | 13.9 | 1.5 | 0.619 |
Copolymer Sample | Pore Diameter (µm) | Homopolymer Sample | |
---|---|---|---|
Polystyrene | 6.15 ± 0.38 | Polystyrene | |
P(2ClS-co-S) | 3.47 ± 0.44 | 4.1 ± 0.45 | P2ClS |
P(3ClS-co-S) | 2.9 ± 0.46 | 5.25 ± 0.35 | P3ClS |
P(4ClS-co-S) | 4.36 ± 0.55 | 6.26 ± 0.20 | P4ClS |
Copolymer Sample | Conformational Entropy | Homopolymer Sample | |
---|---|---|---|
Polystyrene | 1.033 | Polystyrene | |
P(2ClS-co-S) | 1.061 | 1.291 | P2ClS |
P(3ClS-co-S) | 1.089 | 1.112 | P3ClS |
P(4ClS-co-S) | 1.133 | 1.035 | P4ClS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Rubio, L.; Pérez-Álvarez, L.; Sanchez-Bodón, J.; Arrighi, V.; Vilas-Vilela, J.L. The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique. Materials 2019, 12, 167. https://doi.org/10.3390/ma12010167
Ruiz-Rubio L, Pérez-Álvarez L, Sanchez-Bodón J, Arrighi V, Vilas-Vilela JL. The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique. Materials. 2019; 12(1):167. https://doi.org/10.3390/ma12010167
Chicago/Turabian StyleRuiz-Rubio, Leire, Leyre Pérez-Álvarez, Julia Sanchez-Bodón, Valeria Arrighi, and José Luis Vilas-Vilela. 2019. "The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique" Materials 12, no. 1: 167. https://doi.org/10.3390/ma12010167
APA StyleRuiz-Rubio, L., Pérez-Álvarez, L., Sanchez-Bodón, J., Arrighi, V., & Vilas-Vilela, J. L. (2019). The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique. Materials, 12(1), 167. https://doi.org/10.3390/ma12010167