The Effect of Dynamic Recrystallization on Monotonic and Cyclic Behaviour of Al-Cu-Mg Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Tests of Monotonic Tensile, Creep-Rupture, and Creep
3.2. Low-Cycle Fatigue (LCF) Tests
4. Conclusions
- In the case of the creep pre-deformation at 300 °C, the increase of the value of pre-deformation could also be observed to worsen the basic mechanical parameters in comparison with as-extruded material. However, in the case of the pre-deformation at 200 °C and low values of preliminary strain, the increased yield stress was obtained accompanied by a decrease in the ultimate tensile strength. On the other hand, greater preliminary strains led to the worsening of both yield and ultimate tensile strength.
- A significant increase in the strain-controlled fatigue life was observed in the area dominated by plastic deformation in the samples with creep pre-deformation at 300 °C, where clear dynamic recrystallization occurred. This applied to the samples pre-deformed to both values of strain (εs = 0.4% and εt = 2.3%), although the improvement was more significant for εt.
- The inverse situation could be observed in the area dominated by elastic strains. In this case, the fatigue life decreased in comparison with as-extruded material.
- The improvement of the fatigue life was determined to take place at the cost of the decline of its fatigue strength at constant value of the strain-control variable. Such regularity was most visible in the material pre-deformed at the temperature of 300 °C, and was much less visible at 200 °C.
Author Contributions
Funding
Conflicts of Interest
References
- Amrouche, A.; Mesmacque, G.; Garcia, S.; Talha, A. Cold expansion effect on the initiation and propagation of the fatigue crack. Int. J. Fatigue 2003, 25, 949–954. [Google Scholar] [CrossRef]
- Chakherlou, T.N.; Aghdam, A.B.; Akbari, A.; Saeedi, K. Analysis of cold expanded fastener holes subjected to short time creep: Finite element modelling and fatigue tests. Mater. Des. 2010, 31, 2858–2866. [Google Scholar] [CrossRef]
- Karakaş, Ő.; Szusta, J. Monotonic and low cycle fatigue behaviour of 2024-T3 aluminium alloy between room temperature and 300 °C for designing VAWT components. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 95–109. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Y.; Bian, F.; Liu, C. Dynamic recovery and recrystallization mechanisms during ultrasonic spot welding of Al-Cu-Mg alloy. Mater. Charact. 2017, 132, 145–155. [Google Scholar] [CrossRef]
- Son, K.-T.; Lee, J.-W.; Jung, T.-K.; Choi, H.-J.; Kim, S.-W.; Kim, S.K.; Yoon, Y.-O.; Hyun, S.-K. Evaluation of Dynamic Recrystallization Behaviors in Hot-Extruded AA5083 Through Hot Torsion Tests. Met. Mater. Int. 2016, 23, 68–75. [Google Scholar] [CrossRef]
- Maizza, G.; Pero, R.; Richetta, M.; Montanari, R. Continuous dynamic recrystallization (CDRX) model for aluminum alloys. J. Mater. Sci. 2018, 53, 4563–4573. [Google Scholar] [CrossRef]
- Gourdet, S.; Montheillet, F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater. Sci. Eng. A 2000, 283, 274–288. [Google Scholar] [CrossRef]
- Huang, K.; Loge, R.E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Jazaeri, H.; Humphreys, F.J. The transition from discontinuous to continuous recrystallization in some aluminium alloys II—Annealing behaviour. Acta Mater. 2014, 52, 3251–3262. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, W.; Wang, L.; Lavernia, E.J. Ultra-fine grained structure in Al–Mg induced by discontinuous dynamic recrystallization under moderate straining. Mater. Sci. Eng. A 2013, 573, 197–204. [Google Scholar] [CrossRef]
- Shi, C.J.; Lai, J.; Chen, X.G. Microstructural evolution and dynamic softening mechanisms of Al–Zn–Mg–Cu alloy during hot compressive deformation. Mater. Sci. Eng. A 2014, 7, 244–264. [Google Scholar] [CrossRef] [PubMed]
- Tsivoulas, D.; Prangnell, P.B. The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al–Cu–Li AA2198 sheet. Acta Mater. 2014, 77, 1–16. [Google Scholar] [CrossRef]
- Hirata, T.; Higashi, K. The investigation on microcavitation behavior during dynamic recrystallization in PM7475 aluminum alloy. Scr. Mater. 2002, 47, 1–6. [Google Scholar] [CrossRef]
- Hirata, T.; Mukai, T.; Saito, N.; Tanabe, S.; Kohzu, M.; Higashi, K. Experimental prediction of deformation mechanism after continuous dynamic recrystallization in superplastic PM7475. J. Mater. Sci. 2003, 38, 3925–3932. [Google Scholar] [CrossRef]
- Li, J.-C.; Xie, Z.-Y.; Li, S.-P.; Zang, Y.-Y. Modeling on dynamic recrystallization of aluminium alloy 7050 during hot compression based on cellular automaton. J. Cent. South Univ. 2016, 23, 497–507. [Google Scholar] [CrossRef]
- Li, D.-F.; Zhang, D.-Z.; Liu, S.-D.; Shan, Z.-J.; Zhang, X.-M.; Wang, Q.; Han, S.-Q. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation. Trans. Nonferr. Met. Soc. China 2016, 26, 1491–1497. [Google Scholar] [CrossRef]
- Chen, G.; Chen, L.; Zhao, G.; Zhang, C.; Cui, W. Microstructure analysis of an Al-Zn-Mg alloy during porthole die extrusion based on modeling of constitutive equation and dynamic recrystallization. J. Alloys Compd. 2017, 710, 80–91. [Google Scholar] [CrossRef]
- Agarwal, S.; Krajewski, P.E.; Briant, C.L. Dynamic recrystallization of AA5083 at 450C, the effects of strain rate and particle size. Metall. Mater. Trans. A 2008, 39, 1277–1289. [Google Scholar] [CrossRef]
- Hu, H.E.; Zhen, L.; Zhang, B.Y.; Yang, L.; Chen, J.Z. Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery. Mater. Charact. 2008, 59, 1185–1189. [Google Scholar] [CrossRef]
- Dougherty, L.M.; Robertson, I.M.; Vetrano, J.S. Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al–4Mg–0.3Sc alloy. Acta Mater. 2003, 51, 4376–4378. [Google Scholar] [CrossRef]
- Ihara, K.; Miura, Y. Dynamic recrystallization in Al–Mg–Sc alloys. Mater. Sci. Eng. A 2004, 387–389, 647–650. [Google Scholar] [CrossRef]
- Adachi, H.; Yammoto, Y.; Nakanishi, H.; Aida, T.; Imaoka, M.; Kusui, J. Effect of dispersed Al3Sc particles on dynamic recrystallization in PM 7000 series alloys. Trans. Indian Inst. Met. 2009, 62, 159–162. [Google Scholar] [CrossRef]
- Ko, B.-C.; Yoo, Y.-C. Prediction of dynamic recrystallization condition by deformation efficiency for Al 2024 composite reinforced with SiC particle. J. Mater. Sci. 2000, 35, 4073–4077. [Google Scholar] [CrossRef]
- Gholinia, A.; Humphreys, F.J.; Prangnell, P.B. Production of ultra-fine grain microstructures in Al–Mg alloys by conventional rolling. Acta Mater. 2002, 52, 4461–4476. [Google Scholar] [CrossRef]
- Kaibyshev, R.; Shipilova, K.; Musin, F.; Motohashi, Y. Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng. A 2005, 396, 341–351. [Google Scholar] [CrossRef]
- Gholinia, A.; Prangnell, P.B.; Markushev, M.V. The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Mater. 2000, 48, 1115–1130. [Google Scholar] [CrossRef]
- Mazurina, I.; Sakai, T.; Miura, H.; Sitdikov, O.; Kaibyshev, R. Grain refinement in aluminum alloy 2219 during ECAP at 250 °C. Mater. Sci. Eng. A 2008, 473, 297–305. [Google Scholar] [CrossRef]
- Mazurina, I.; Sakai, T.; Miura, H.; Sitdikov, O.; Kaibyshev, R. Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP. Mater. Sci. Eng. A 2008, 486, 662–671. [Google Scholar] [CrossRef]
- Nikulin, I.; Kaibyshev, R.; Sakai, T. Superplasticity in a 7055 aluminum alloy processed by ECAE and subsequent isothermal rolling. Mater. Sci. Eng. A 2005, 407, 62–70. [Google Scholar] [CrossRef]
- Sitdikov, O.; Sakai, T.; Miura, H.; Hama, C. Temperature effect on fine-grained structure formation in high-strength Al alloy 7475 during hot severe deformation. Mater. Sci. Eng. A 2009, 516, 180–188. [Google Scholar] [CrossRef]
- Sauvage, X.; Murashkin, M.Y.; Straumal, B.B.; Bobruk, E.V.; Valiev, R.Z. Ultrafine Grained Structures Resulting from SPD-Induced Phase Transformation in Al–Zn Alloys. Adv. Eng. Mater. 2015, 17, 1821–1827. [Google Scholar] [CrossRef]
- Straumal, B.B.; Baretzky, B.; Mazilkin, A.A.; Phillipp, F.; Kogtenkova, O.A.; Volkov, M.N.; Valiev, R.Z. Formation of nanograined structure and decomposition of supersaturated solid solution during high pressure torsion of Al–Zn and Al–Mg alloys. Acta Mater. 2004, 52, 4469–4478. [Google Scholar] [CrossRef]
- Straumal, B.B.; Kilmametov, A.R.; Korneva, A.; Mazilkin, A.A.; Straumal, P.B.; Zięba, P.; Baretzky, B. Phase transitions in Cu-based alloys under high pressure torsion. J. Alloys Compd. 2017, 707, 20–26. [Google Scholar] [CrossRef]
- Kilmametov, A.R.; Ivanisenko, Y.; Mazilkin, A.A.; Straumal, B.B.; Gornakova, A.S.; Fabrichnaya, O.B.; Kriegel, M.J.; Rafaja, D.; Hahn, H. The α→ω and β→ω phase transformations in Ti-Fe alloys under high-pressure torsion. Acta Mater. 2018, 144, 337–351. [Google Scholar] [CrossRef]
- Inspection Certificate according to EN 10204/3.1. (Received from the Seller). Available online: http://nst.no/dokumenter/sertifikater/429110.pdf (accessed on 22 May 2018).
- Tomczyk, A.; Koniuszewski, R. Construction of a System for Measuring Sample Elongations at Elevated Temperatures Using Devices Intended for Work at Room Temperature. Patent No. PL 68955 Y1, 31 March 2017. (In Polish). [Google Scholar]
- ASTM E606. Standard Test Method for Strain-Controlled Fatigue Testing; ASTM: West Conshohocken, PA, USA, 2012. [Google Scholar]
- EN ISO 6892-1: 2016. Metallic Materials, Tensile Testing—Part 1: Method of Test at Room Temperature; ISO: Geneva, Switzerland, 2016. [Google Scholar]
- EN ISO 6892-2: 2011. Metallic Materials, Tensile Testing—Part 2: Method of Test at Elevated Temperature; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Derpenski, Ł.; Seweryn, A. Ductile fracture of EN-AW 2024 aluminum alloy specimens with notches under biaxial loading. Part 2—Numerical research and ductile fracture criterion. Theor. Appl. Fract. Mech. 2016, 84, 203–2014. [Google Scholar] [CrossRef]
- Tomczyk, A.; Seweryn, A. Fatigue life of EN AW-2024 alloy accounting for creep pre-deformation at elevated temperature. Int. J. Fatigue 2017, 103, 488–507. [Google Scholar] [CrossRef]
- Tomczyk, A.; Seweryn, A.; Doroszko, M. Monotonic behaviour of typical Al-Cu-Mg alloy pre-strained at elevated temperature. J. Theor. Appl. Mech. 2018. accepted. [Google Scholar]
- EN ISO 204: 2009. Metallic Materials, Uniaxial Creep Testing in Tension: Method of Test; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Ro, Y.J.; Begley, M.R.; Gangloff, R.P.; Agnew, S.R. Effect of aging on scale-dependent plasticity in aluminum alloy 2024. Mater. Sci. Eng. A 2006, 435–436, 333–342. [Google Scholar] [CrossRef]
- Li, C.; Wan, M.; Wu, X.-D.; Huang, L. Constitutive equations in creep of 7B04 aluminum alloys. Mater. Sci. Eng. A 2010, 527, 3623–3629. [Google Scholar] [CrossRef]
- Guo, W.; Yang, M.; Zheng, Y.; Zhang, X.; Li, H.; Wen, X.; Zhang, J. Influence of elastic tensile stress on aging process in an Al–Zn–Mg–Cu alloy. Mater. Lett. 2013, 106, 14–17. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, Y.-Q.; Xia, Y.-C.; Zhang, X.-C.; Zhou, H.-M.; Deng, J. Effects of creep-aging processing on the corrosion resistance and mechanical properties of an Al–Cu–Mg alloy. Mater. Sci. Eng. A 2014, 605, 192–202. [Google Scholar] [CrossRef]
- Li, L.-T.; Lin, Y.C.; Zhou, H.-M.; Jiang, Y.-Q. Modeling the high temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Comput. Mater. Sci. 2013, 73, 72–78. [Google Scholar] [CrossRef]
- Manson, S.S. Behavior of Materials under Conditions of Thermal Stress; Report No. NACA TN-2933; National Advisory Committee for Aeronautics: Kitty Hawk, NC, USA, 1954. [Google Scholar]
- Coffin, L.F. A study of the effect of cyclic thermal stresses on a ductile metal. Trans. ASME 1954, 76, 931–950. [Google Scholar]
- Basquin, O.H. The exponential law of endurance tests. Am. Soc. Test. Mater. Proc. 1910, 10, 625–630. [Google Scholar]
- Szusta, J.; Seweryn, A. Experimental study of the low-cycle fatigue life under multiaxial loading of aluminum alloy EN AW-2024-T3 at elevated temperatures. Int. J. Fatigue 2017, 96, 28–42. [Google Scholar] [CrossRef]
- El Gharad, A.; Zedira, H.; Azari, Z.; Pluvinage, G. A synergistic creep fatigue failure model damage (case of the alloy Z5NCTA at 550 °C). Eng. Fract. Mech. 2006, 73, 750–770. [Google Scholar] [CrossRef]
- Falkowska, A.; Seweryn, A.; Tomczyk, A. Fatigue life and strength of 316L sintered steel of varying porosity. Int. J. Fatigue 2018, 111, 161–176. [Google Scholar] [CrossRef]
Component | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti |
---|---|---|---|---|---|---|---|---|
Amount (%) | 0.13 | 0.25 | 4.4 | 0.62 | 1.7 | 0.01 | 0.08 | 0.05 |
Set Temperature (°C) | Heating Rate (°C/min) | Estimated Time of Heating (min) |
---|---|---|
100 | 3 | 170 (±5) |
200 | 5 | 120 (±3) |
300 | 8 | 100 (±2) |
T (°C) | E (GPa) | σy (MPa) | σu (MPa) | σc (MPa) | εu (%) | εB (%) | εc (%) |
---|---|---|---|---|---|---|---|
20 | 74 | 447 | 580 | 686 | 12.1 | 13.3 | 13.8 |
100 | 71 | 418 | 536 | 647 | 10.3 | 12.7 | 14.5 |
200 | 70 | 372 | 460 | 657 | 9.1 | 19.8 | 38.7 |
300 | 56 | 214 | 219 | 283 | 2.1 | 17.0 | 52.9 |
Pre-Deformation Condition | E (GPa) | σy (MPa) | σu (MPa) | σc (MPa) | εu (%) | εB (%) | εc (%) | ||
---|---|---|---|---|---|---|---|---|---|
T (°C) | εs (%) | εt (%) | |||||||
100 | 10 | - | 72 | 598 | 610 | 680 | 4.6 | 5.3 | 7.1 |
- | 15 | 72 | 635 | 640 | 673 | 2.7 | 2.7 | 3.5 | |
200 | 0.6 | - | 74 | 475 | 550 | 716 | 7.9 | 13.9 | 20.8 |
- | 2.3 | 74 | 443 | 490 | 642 | 4.9 | 13.1 | 25.3 | |
300 | 0.4 | - | 71 | 255 | 363 | 518 | 7.1 | 17.9 | 36.5 |
- | 2.3 | 73 | 186 | 316 | 380 | 8.7 | 13.1 | 15.2 |
εa | As-Extruded | Pre-Deformed at 200 °C | Pre-Deformed at 300 °C | |||||
---|---|---|---|---|---|---|---|---|
Nf | σa (MPa) | εs(εt) (%) | Nf | σa (MPa) | εs(εt) (%) | Nf | σa (MPa) | |
0.02 | 7 | 571 | εs = 0.6 | 12 | 587 | εs = 0.4 | 66 | 333 |
εt = 2.3 | 31 | 461 | εt = 2.3 | 99 | 262 | |||
0.01 | 69 | 507 | εs = 0.6 | 162 | 505 | εs = 0.4 | 261 | 298 |
εt = 2.3 | 208 | 428 | εt = 2.3 | 379 | 237 | |||
0.008 | 202 | 494 | εs = 0.6 | 395 | 499 | εs = 0.4 | 483 | 283 |
εt = 2.3 | 455 | 409 | εt = 2.3 | 610 | 232 | |||
0.005 | 9576 | 361 | εs = 0.6 | 6235 | 355 | εs = 0.4 | 1528 | 254 |
εt = 2.3 | 2906 | 342 | εt = 2.3 | 1420 | 206 | |||
0.0035 | 58,965 | 260 | εs = 0.6 | 62,739 | 254 | εs = 0.4 | 5747 | 227 |
εt = 2.3 | 22,914 | 255 | εt = 2.3 | 3836 | 191 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomczyk, A.; Seweryn, A.; Grądzka-Dahlke, M. The Effect of Dynamic Recrystallization on Monotonic and Cyclic Behaviour of Al-Cu-Mg Alloy. Materials 2018, 11, 874. https://doi.org/10.3390/ma11060874
Tomczyk A, Seweryn A, Grądzka-Dahlke M. The Effect of Dynamic Recrystallization on Monotonic and Cyclic Behaviour of Al-Cu-Mg Alloy. Materials. 2018; 11(6):874. https://doi.org/10.3390/ma11060874
Chicago/Turabian StyleTomczyk, Adam, Andrzej Seweryn, and Małgorzata Grądzka-Dahlke. 2018. "The Effect of Dynamic Recrystallization on Monotonic and Cyclic Behaviour of Al-Cu-Mg Alloy" Materials 11, no. 6: 874. https://doi.org/10.3390/ma11060874
APA StyleTomczyk, A., Seweryn, A., & Grądzka-Dahlke, M. (2018). The Effect of Dynamic Recrystallization on Monotonic and Cyclic Behaviour of Al-Cu-Mg Alloy. Materials, 11(6), 874. https://doi.org/10.3390/ma11060874