Macro-Scale Strength and Microstructure of ZrW2O8 Cementitious Composites with Tunable Low Thermal Expansion
Abstract
:1. Introduction
2. Materials and Testing Methods
2.1. Materials
2.2. Fabrication of Specimens
2.3. Testing
2.3.1. Testing the thermal expansion coefficient (TEC)
2.3.2. Flexural Strength Determination
2.3.3. Compressive Strength Testing
2.4. Scanning Electron Microscope (SEM) Imaging
2.5. Theoretical Prediction of TEC
3. Results and Discussion
3.1. Macro-Thermo-Mechanical Properties
3.2. SEM Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Nomenclature and Acronym
ZrW2O8 | Zirconium tungstate |
TEC | Thermal expansion coefficient |
SEM | Scanning Electron Microscope |
CCs | Cementitious Composites |
MgO | Magnesium oxide |
3D | Three dimensional |
σ | Thermal stress |
E | Young’s Modulus |
α | TEC (Thermal expansion coefficient) |
ΔT | Temperature increment |
NTE | Negative thermal expansion |
ZrV2O7 | Zirconium pyrovanadate |
ZCCs | ZrW2O8 cementitious composites |
Z/C | ZrW2O8/Cement Ratio |
Ff | Force while the specimen is destroyed in the flexural test |
[σ]f | Flexural strength |
L | Distance between the supports in three-point flexural test |
b | Width of cross section area. |
TECs of cement stone, sand and ZrW2O8, respectively | |
Elastic modulus of cement stone, sand and ZrW2O8 | |
Volume fraction of cement stone, sand and ZrW2O8 |
References
- Kumar Mehta, P.; Monteiro, P.J.M. Concrete Microstructure, Properties, and Materials; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Hu, Y.; Luo, D.; Li, P.; Li, Q.; Sun, G. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Constr. Build. Mater. 2014, 70, 332–338. [Google Scholar] [CrossRef]
- Luo, J.; Chen, X.; Crump, J.; Zhou, H.; Davies, D.G.; Zhou, G.; Zhang, N.; Jin, C. Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Constr. Build. Mater. 2018, 164, 275–285. [Google Scholar] [CrossRef]
- Granger, S.; Loukili, A.; Pijaudier-Cabot, G.; Chanvillard, G. Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cem. Concr. Res. 2007, 37, 519–527. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, Y.J.; Jung, Y.J.; Park, J.H.; Lee, B.S.; Kim, K.H. Ductile capacity of reinforced concrete columns with electric arc furnace oxidizing slag aggregate. Constr. Build. Mater. 2018, 162, 781–793. [Google Scholar] [CrossRef]
- Rakgate, S.M.; Dundu, M. Strength and ductility of simple supported R/C beams retrofitted with steel plates of different width-to-thickness ratios. Eng. Struct. 2018, 157, 192–202. [Google Scholar] [CrossRef]
- Wild, S.; Khatib, J.M.; Jones, A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem. Concr. Res. 1996, 26, 1537–1544. [Google Scholar] [CrossRef]
- Berry, E.E.; Hemmings, R.T.; Zhang, M.H.; Cornelius, B.J.; Golden, M.D. Hydration in high-volume fly ash concrete binders. ACI Mater. J. 1994, 91, 382–389. [Google Scholar]
- Shah, S.P.; Karaguler, M.E.; Sarigaphuti, M. Effects of shrinkage-reducing admixtures on restrained shrinkage cracking of concrete. ACI Mater. J. 1992, 89, 289–295. [Google Scholar]
- Chen, P.W.; Chung, D.D.L. Low-drying-shrinkage concrete containing carbon fibers. Compos. Part B Eng. 1996, 27, 269–274. [Google Scholar] [CrossRef]
- Chuah, S.; Pan, Z.; Sanjayan, J.G.; Wang, C.M.; Duan, W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 2014, 73, 113–124. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Gong, K.; Pan, Z.; Korayem, A.H.; Qiu, L.; Li, D.; Collins, F.; Wang, C.M.; Duan, W.H. Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 2015, 27, 1–6. [Google Scholar] [CrossRef]
- Chan, L.Y.; Andrawes, B. Finite element analysis of carbon nanotube/cement composite with degraded bond strength. Comput. Mater. Sci. 2010, 47, 994–1004. [Google Scholar] [CrossRef]
- Saafi, M.; Andrew, K.; Tang, P.L.; McGhon, D.; Taylor, S.; Rahman, M.; Yang, S.; Zhou, X. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Constr. Build. Mater. 2013, 49, 46–55. [Google Scholar] [CrossRef]
- Xu, S.; Liu, J.; Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 2015, 76, 16–23. [Google Scholar] [CrossRef]
- Wang, B.; Han, Y.; Liu, S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites. Constr. Build. Mater. 2013, 46, 8–12. [Google Scholar] [CrossRef]
- Kim, H.K.; Nam, I.W.; Lee, H.K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos. Struct. 2014, 107, 60–69. [Google Scholar] [CrossRef]
- Stynoski, P.; Mondal, P.; Marsh, C. Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar. Cem. Concr. Compos. 2015, 55, 232–240. [Google Scholar] [CrossRef]
- Zhang, R.; Panesar, D.K. New approach to calculate water film thickness and the correlation to the rheology of mortar and concrete containing reactive MgO. Constr. Build. Mater. 2017, 150, 892–902. [Google Scholar] [CrossRef]
- Altun, İ.A.; Yılmaz, İ. Study on steel furnace slags with high MgO as additive in Portland cement. Cem. Concr. Res. 2002, 32, 1247–1249. [Google Scholar] [CrossRef]
- Mendoza, O.; Sierra, G.; Tobón, J.I. Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications. Constr. Build. Mater. 2013, 47, 771–778. [Google Scholar] [CrossRef]
- Kamoun, A.; Jelidi, A.; Chaabouni, M. Evaluation of the performance of sulfonated esparto grass lignin as a plasticizer–water reducer for cement. Cem. Concr. Res. 2003, 33, 995–1003. [Google Scholar] [CrossRef]
- Pan, W.; Ding, Z.; Chen, Y. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials. Mater. Sci. Eng. Conf. Ser. 2017, 182, 012046. [Google Scholar] [CrossRef]
- Langan, B.W.; Weng, K.; Ward, M.A. Effect of silica fume and fly ash on heat of hydration of Portland cement. Cem. Concr. Res. 2002, 32, 1045–1051. [Google Scholar] [CrossRef]
- Diamond, S. Effects of two Danish flyashes on alkali contents of pore solutions of cement-flyash pastes. Cem. Concr. Res. 1981, 11, 383–394. [Google Scholar] [CrossRef]
- Yangbo, L.; Dahai, H.; Jianshu, O. Fast algorithms of the simulation analysis of the thermal stresses on concrete dams during construction periods. Phys. Procedia 2012, 24, 1171–1177. [Google Scholar] [CrossRef]
- Zhu, B. Thermal Stress and Temperature Control in Massive Concrete; Power Publisher of China: Beijing, China, 1999. [Google Scholar]
- Paul, S.C.; Yi, W.D.T.; Panda, B.; Ming, J.T. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nematollahi, B.; Xia, M.; Marchment, T. Effect of surface moisture on inter-layer strength of 3D printed concrete. Constr. Build. Mater. 2018, 172, 468–475. [Google Scholar] [CrossRef]
- Asprone, D.; Auricchio, F.; Menna, C.; Mercuri, V. 3D printing of reinforced concrete elements: Technology and design approach. Constr. Build. Mater. 2018, 165, 218–231. [Google Scholar] [CrossRef]
- Pryde, A.K.A.; Hammonds, K.D.; Dove, M.T.; Heine, V.; Gale, J.D.; Warren, M.C. Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7. J. Phys. Condens. Matter 1996, 8, 10973–10982. [Google Scholar] [CrossRef]
- Yi, J.; Cao, Y.; Feng, D.; Huang, Y. Characterization of zirconium tungstate filler and performance investigation on asphalt mastic made with zirconium tungstate filler. Constr. Build. Mater. 2016, 125, 387–397. [Google Scholar] [CrossRef]
- Neely, L.A.; Kochergin, V.; See, E.M.; Robinson, H.D. Negative thermal expansion in a zirconium tungstate/epoxy composite at low temperatures. J. Mater. Sci. 2014, 49, 392–396. [Google Scholar] [CrossRef]
- Duan, N.U.; Kameswari, A.; Sleight, A.W. Further Contraction of ZrW2O8. J. Am. Chem. Soc. 2013, 121, 10432–10433. [Google Scholar] [CrossRef]
- Sheng, J.; Wang, L.D.; Li, D.; Cao, W.P.; Feng, Y.; Wang, M.; Yang, Z.Y.; Zhao, Y.; Fei, W.D. Thermal expansion behavior of copper matrix composite containing negative thermal expansion PbTiO3 particles. Mater. Des. 2017, 132, 442–447. [Google Scholar] [CrossRef]
- Peng, Z.; Sun, Y.Z.; Peng, L.M. Hydrothermal synthesis of ZrW2O8 nanorods and its application in ZrW2O8/Cu composites with controllable thermal expansion coefficients. Mater. Des. 2014, 54, 989–994. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, X.; Yan, X.; Yang, J.; Fu, T.; Qiu, J. Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion. Compos. Sci. Technol. 2007, 67, 1167–1171. [Google Scholar] [CrossRef]
- Sun, L.; Kwon, P. ZrW2O8/ZrO2 composites by in situ synthesis of ZrO2 + WO3: Processing, coefficient of thermal expansion, and theoretical model prediction. Mater. Sci. Eng. A 2009, 527, 93–97. [Google Scholar] [CrossRef]
- Lin, K.; Qiu, S.; Lin, B.; Wang, Y. An Investigation of the Thermal Expansion Coefficient for Resin Concrete with ZrW2O8. Appl. Sci. 2015, 5, 367–379. [Google Scholar] [CrossRef]
- Kofteros, M.; Rodriguez, S.; Tandon, V.; Murr, L.E. A preliminary study of thermal expansioin compensation in cement by ZrW2O8 additions. Scr. Mater. 2001, 45, 369–374. [Google Scholar] [CrossRef]
- Chinese Building Materials Academy. Method of Testing Cement-Determination of Strength; China Standards Press: Beijing, China, 1999. [Google Scholar]
No. | ZrW2O8/Cement (%) | Cement/(g) | Sand/(g) | Water/(mL) | ZrW2O8/(g) |
---|---|---|---|---|---|
1 | 0 | 450 | 1350 | 225 | 0 |
2 | 10 | 450 | 1350 | 225 | 45 |
3 | 20 | 450 | 1350 | 225 | 90 |
4 | 30 | 450 | 1350 | 225 | 135 |
5 | 40 | 450 | 1350 | 225 | 180 |
6 | 50 | 450 | 1350 | 225 | 225 |
7 | 60 | 450 | 1350 | 225 | 270 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, J.; Li, Y.; Chen, B.; Huang, D. Macro-Scale Strength and Microstructure of ZrW2O8 Cementitious Composites with Tunable Low Thermal Expansion. Materials 2018, 11, 748. https://doi.org/10.3390/ma11050748
Ouyang J, Li Y, Chen B, Huang D. Macro-Scale Strength and Microstructure of ZrW2O8 Cementitious Composites with Tunable Low Thermal Expansion. Materials. 2018; 11(5):748. https://doi.org/10.3390/ma11050748
Chicago/Turabian StyleOuyang, Jianshu, Yangbo Li, Bo Chen, and Dahai Huang. 2018. "Macro-Scale Strength and Microstructure of ZrW2O8 Cementitious Composites with Tunable Low Thermal Expansion" Materials 11, no. 5: 748. https://doi.org/10.3390/ma11050748