Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of PVAMS/TPS Composites
2.3. Characterization of Composites
3. Results and Discussion
3.1. Mechanical Properties
3.2. Surface Topography
3.3. Dynamic Mechanical Thermal Properties
3.4. Thermal Stability
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gandini, A. The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem. 2011, 13, 1061–1083. [Google Scholar] [CrossRef]
- Suvorova, A.I.; Tyukova, I.S.; Trufanova, E.I. Biodegradable starch-based polymeric materials. Russ. Chem. Rev. 2000, 69, 451–459. [Google Scholar] [CrossRef]
- Morán, J.I.; Cyras, V.P.; Giudicessi, S.L.; Erra-Balsells, R.; Vázquez, A. Influence of the Glycerol Content and Temperature on the Rheology of Native and Acetylated Starches During and After Gelatinization. J. Appl. Polym. Sci. 2011, 120, 3410–3420. [Google Scholar] [CrossRef]
- Alanís-López, P.; Pérez-González, J.; Rendón-Villalobos, R.; Jiménez-Pérez, A.; Solorza-Feria, J. Extrusion and characterization of thermoplastic starch sheets from “macho” banana. J. Food Sci. 2011, 76, E465–E471. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.A.L.; Sullivan, C.O’.; Rounsefell, B.; Halley, P.J.; Truss, R.; Clarke, W.P. The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresour. Technol. 2009, 100, 1705–1710. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yu, J.; Ma, X.; Wu, Y. The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydr. Polym. 2007, 67, 446–453. [Google Scholar] [CrossRef]
- Shin, B.Y.; Sang, H.J.; Kim, B.S. Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch. Polym. Eng. Sci. 2011, 51, 826–834. [Google Scholar] [CrossRef]
- Ren, J.; Fu, H.; Ren, T.; Yuan, W. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly (lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydr. Polym. 2009, 77, 576–582. [Google Scholar] [CrossRef]
- Prachayawarakorn, J.; Sangnitidej, P.; Boonpasith, P. Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr. Polym. 2010, 81, 425–433. [Google Scholar] [CrossRef]
- Fabunmi, O.O.; Tabil, L.G.; Panigrahi, S.; Chang, P.R. Effects of Incorporating Polycaprolactone and Flax Fiber into Glycerol-Plasticized Pea Starch. J. Polym. Environ. 2011, 19, 841–848. [Google Scholar] [CrossRef]
- Gironès, J.; López, J.P.; Mutjé, P.; Carvalho, A.I.F.; Curvelo, A.A.S.; Vilaseca, F. Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Compos. Sci. Technol. 2012, 72, 858–863. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Thompson, M.; Liu, Q. The effect of pea fiber and potato pulp on thermal property, surface tension, and hydrophilicity of extruded starch thermoplastics. Carbohydr. Polym. 2011, 86, 700–707. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, B.; Zhang, J.W. Novel High-Strength Thermoplastic Starch Reinforced by in situ Poly(lactic acid) Fibrillation. Macromol. Mater. Eng. 2009, 294, 301–305. [Google Scholar] [CrossRef]
- Guo, B.; Wang, L.J.; Yin, P.; Li, B.G.; Li, P.X. Ultra-high molecular weight polyethylene fibers-reinforced thermoplastic corn starch composite. J. Thermoplast. Compos. Mater. 2017, 30, 564–577. [Google Scholar] [CrossRef]
- Teixeira, E.D.M.; Lotti, C.; Corrêa, A.C.; Teodoro, K.B.R.; Marconcini, J.M.; Mattoso, L.H.C. Thermoplastic corn starch reinforced with cotton cellulose nanofibers. J. Appl. Polym. Sci. 2011, 120, 2428–2433. [Google Scholar] [CrossRef]
- Savadekar, N.R.; Mhaske, S.T. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr. Polym. 2012, 89, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.; Misran, E.; Hassan, N.; Abd, J.A.; Seng, C.E. Modified PVA-alginate encapsulated photocatalystferro photo gels for Cr(VI) reduction. J. Hazard. Mater. 2012, 227–228, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Burgess, D.J. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings. Int. J. Pharm. 2012, 422, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.C.; Jiang, T.; Gan, L.L.; Zhang, X.F.; Dai, H.; Zhang, X. The plasticizing mechanism and effect of calcium chloride on starch/poly(vinyl alcohol) films. Carbohydr. Polym. 2012, 90, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Cui, Y.F.; Jia, D.M.; Xie, D. Effect of a Complex Plasticizer on the Structure and Properties of the Thermoplastic PVA/Starch Blends. Polym. Plast. Technol. Eng. 2009, 48, 489–495. [Google Scholar] [CrossRef]
- Ramaraj, B. Crosslinked poly(vinyl alcohol) and starch composite films: Study of their physicomechanical, thermal, and swelling properties. J. Appl. Polym. Sci. 2007, 103, 1127–1132. [Google Scholar] [CrossRef]
- Liang, J.Z.; Li, R.K.Y. Mechanical properties and morphology of glass bead–filled polypropylene composites. Polym. Compos. 1998, 19, 698–703. [Google Scholar] [CrossRef]
- Liang, F.; Yu, L.L.; Yao, L.; Zhang, J.S. Preparation of Micron-sized Crosslinked Poly (vinyl alcohol) Microspheres via Inverse Suspension-Chemical Crosslinking Method. J. Appl. Polym. Sci. 2013, 13, 2676–2681. [Google Scholar] [CrossRef]
- Tábi, T.; Kovács, J.G. Examination of starch preprocess drying and water absorption of injection-molded starch-filled poly(lactic acid) products. Polym. Eng. Sci. 2011, 51, 843–850. [Google Scholar] [CrossRef]
- Bergamasco, J.; Araujo, M.V.D.; Vasconcellos, A.D.; Filho, R.A.L.; Hatanaka, R.R; Giotto, M.V.; Aranda, D.A.G.; Nery, J.G. Enzymatic transesterification of soybean oil with ethanol using lipases immobilized on highly crystalline PVA microspheres. Biomass Bioenergy 2013, 59, 218–233. [Google Scholar] [CrossRef]
- Neus, A.M.; Alain, D. Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules 2000, 33, 8344–8353. [Google Scholar]
- Liang, J.Z.; Li, R.K.Y. Effect of filler content and surface treatment on the tensile properties of glass-bead-filled polypropylene composites. Polym. Int. 2000, 49, 170–174. [Google Scholar] [CrossRef]
* TPS | 0.5% | 1% | 1.5% | 2% | |
---|---|---|---|---|---|
Tβ | −46.71 | −40.53 | −36.52 | −38.27 | −39.40 |
Tα | 64.38 | 64.61 | 69.87 | 62.65 | 64.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, B.; Zha, D.; Li, B.; Yin, P.; Li, P. Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites. Materials 2018, 11, 640. https://doi.org/10.3390/ma11040640
Guo B, Zha D, Li B, Yin P, Li P. Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites. Materials. 2018; 11(4):640. https://doi.org/10.3390/ma11040640
Chicago/Turabian StyleGuo, Bin, Dongdong Zha, Bengang Li, Peng Yin, and Panxin Li. 2018. "Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites" Materials 11, no. 4: 640. https://doi.org/10.3390/ma11040640
APA StyleGuo, B., Zha, D., Li, B., Yin, P., & Li, P. (2018). Polyvinyl Alcohol Microspheres Reinforced Thermoplastic Starch Composites. Materials, 11(4), 640. https://doi.org/10.3390/ma11040640