A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry of the Partition Wall
2.2. Boundary Conditions for the Numerical Analysis
2.3. Numerical Methods
2.3.1. Materials Response in the Uniaxial Tests
2.3.2. Elastic Finite Element Method
2.3.3. The Incremental Elastic-Plastic Constitutive Model
2.3.4. Computational Contact Theory
2.3.5. Thermal Analysis
3. Results and Discussions
3.1. Mechanical Properties
3.1.1. Effect of the eccentricity
3.1.2. Effect of porosity
3.2. Thermal Performance
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- Sarja, A. Integrated Life Cycle Design of Structures; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Rodrigues, P.; Silvestre, J.D.; Flores-Colen, I.; Viegas, C.A.; de Brito, J.; Kurad, R.; Demertzi, M. Methodology for the assessment of the ecotoxicological potential of construction materials. Materials 2017, 10, 649. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Huang, S. Mechanical properties of a porous bioscaffold with hierarchy. Mater. Lett. 2013, 95, 89–92. [Google Scholar] [CrossRef]
- Huang, S.; Chen, Z.; Pugno, N.; Chen, Q.; Wang, W. A novel model for porous scaffold to match the mechanical anisotropy and the hierarchical structure of bone. Mater. Lett. 2014, 122, 315–319. [Google Scholar] [CrossRef]
- Huang, S.; Li, Z.; Chen, Z.; Chen, Q.; Pugno, N. Study on the elastic–plastic behavior of a porous hierarchical bioscaffold used for bone regeneration. Mater. Lett. 2013, 112, 43–46. [Google Scholar] [CrossRef]
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813. [Google Scholar] [CrossRef] [PubMed]
- Tomaževič, M.; Lutman, M.; Petković, L. Seismic behavior of masonry walls: Experimental simulation. J. Struct. Eng. 1996, 122, 1040–1047. [Google Scholar] [CrossRef]
- Tong, X.; Hajjar, J.F.; Schultz, A.E.; Shield, C.K. Cyclic behavior of steel frame structures with composite reinforced concrete infill walls and partially-restrained connections. J. Constr. Steel Res. 2005, 61, 531–552. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, P.; Geng, F.; Li, H.; Zhang, L.; Liu, H. Thermal conductivity and mechanical properties of porous concrete materials. Mater. Lett. 2017, 209, 349–352. [Google Scholar] [CrossRef]
- Asdrubali, F.; Pisello, A.; D’alessandro, F.; Bianchi, F.; Fabiani, C.; Cornicchia, M.; Rotili, A. Experimental and numerical characterization of innovative cardboard based panels: Thermal and acoustic performance analysis and life cycle assessment. Build. Environ. 2016, 95, 145–159. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H. Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl. Acoust. 2010, 71, 607–615. [Google Scholar] [CrossRef]
- Mateus, R.; Neiva, S.; Bragança, L.; Mendonça, P.; Macieira, M. Sustainability assessment of an innovative lightweight building technology for partition walls–comparison with conventional technologies. Build. Environ. 2013, 67, 147–159. [Google Scholar] [CrossRef]
- Ashby, M. Multi-objective optimization in material design and selection. Acta Mater. 2000, 48, 359–369. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Manurung, Y.H.; Berhan, M.N. Model development for mechanical properties and weld quality class of friction stir welding using multi-objective taguchi method and response surface methodology. J. Mech. Sci. Technol. 2015, 29, 2323–2331. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. General Technical Requirements of Light Weight Panel for Building Partition(JG/T169-2016); Standards Press of China: Beijing, China, 2016.
- Standardization Administration of the People's Republic of China. Hollow Concrete Panels Contained Solid Wastes for Partition Wall(GB/T 23449-2009); Standards Press of China: Beijing, China, 2009. [Google Scholar]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Pierre, A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater. Struct. 2016, 49, 1213–1220. [Google Scholar] [CrossRef]
- Beretka, J.; Matthew, P. Natural radioactivity of australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Bribián, I.Z.; Capilla, A.V.; Usón, A.A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F. Eco-efficient construction and building materials research under the EU framework programme horizon 2020. Constr. Build. Mater. 2014, 51, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Sutcu, M.; Alptekin, H.; Erdogmus, E.; Er, Y.; Gencel, O. Characteristics of fired clay bricks with waste marble powder addition as building materials. Constr. Build. Mater. 2015, 82, 1–8. [Google Scholar] [CrossRef]
- Nochaiya, T.; Chaipanich, A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 2011, 257, 1941–1945. [Google Scholar] [CrossRef]
- Punurai, W.; Jarzynski, J.; Qu, J.; Kim, J.-Y.; Jacobs, L.J.; Kurtis, K.E. Characterization of multi-scale porosity in cement paste by advanced ultrasonic techniques. Cem. Concr. Res. 2007, 37, 38–46. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, K.; Raghavan, P. A multi-level computational model for multi-scale damage analysis in composite and porous materials. Int. J. Solids Struct. 2001, 38, 2335–2385. [Google Scholar] [CrossRef]
- Qian, Z.; Schlangen, E.; Ye, G.; van Breugel, K. Modeling framework for fracture in multiscale cement-based material structures. Materials 2017, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Ramezanianpour, A.; Malhotra, V. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Compos. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Ortega, J.M.; Sánchez, I.; Climent, M. Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of opc and slag cement mortars. Arch. Civ. Mech. Eng. 2015, 15, 569–583. [Google Scholar] [CrossRef]
- Joshaghani, A.; Balapour, M.; Ramezanianpour, A.A. Effect of controlled environmental conditions on mechanical, microstructural and durability properties of cement mortar. Constr. Build. Mater. 2018, 164, 134–149. [Google Scholar] [CrossRef]
- Ortega, J.M.; Esteban, M.D.; Rodríguez, R.R.; Pastor, J.L.; Ibanco, F.J.; Sánchez, I.; Climent, M.Á. Long-term behaviour of fly ash and slag cement grouts for micropiles exposed to a sulphate aggressive medium. Materials 2017, 10, 598. [Google Scholar] [CrossRef] [PubMed]
- Guedes, J.; Kikuchi, N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Methods Appl. Mech. Eng. 1990, 83, 143–198. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.D.; Bieler, T.R.; Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2010, 58, 1152–1211. [Google Scholar] [CrossRef]
- Pavliotis, G.; Stuart, A. Multiscale Methods: Averaging and Homogenization; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Rao, S.S. The Finite Element Method in Engineering; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Sharma, N.K.; Misra, R.; Sharma, S. Finite element modeling of effective thermomechanical properties of Al–B4C metal matrix composites. J. Mater. Sci. 2017, 52, 1416–1431. [Google Scholar] [CrossRef]
- Del Masto, A.; Trivaudey, F.; Guicheret-Retel, V.; Placet, V.; Boubakar, L. Nonlinear tensile behaviour of elementary hemp fibres: A numerical investigation of the relationships between 3D geometry and tensile behaviour. J. Mater. Sci. 2017, 52, 6591–6610. [Google Scholar] [CrossRef]
- Asséko, A.C.A.; Cosson, B.; Duborper, C.; Lacrampe, M.-F.; Krawczak, P. Numerical analysis of effective thermal conductivity of plastic foams. J. Mater. Sci. 2016, 51, 9217–9228. [Google Scholar] [CrossRef]
- Hibbitt, Karlsson and Sorensen Incorporated. Abaqus/Explicit: User's Manual; Hibbitt, Karlsson and Sorenson Incorporated: Pawtucket, RI, USA, 2001; Volume 1. [Google Scholar]
- Hognestad, E. A Study of Combined Bending and Axial Load in Reinforced Concrete Members; Engineering Experiment Station, University of Illinois: Urbana, IL, USA, 1951. [Google Scholar]
- Mazars, J.; Pijaudier-Cabot, G. Continuum damage theory—Application to concrete. J. Eng. Mech. 1989, 115, 345–365. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Zhong, K.; Liu, J. Effects of wind conditions on heat dissipation from surfaces of walls for isolated low-rise building subject to winter solar radiation. In Proceedings of the 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 21–23 October 2016; pp. 653–658. [Google Scholar]
- Ito, N. Field experiment study on the convective heat transfer coefficient on exterior surface of a building. ASHRAE Trans. (United States) 1972, 78, 184–191. [Google Scholar]
- Del Coz Diaz, J.; Nieto, P.G.; Rodriguez, A.M.; Martinez-Luengas, A.L.; Biempica, C.B. Non-linear thermal analysis of light concrete hollow brick walls by the finite element method and experimental validation. Appl. Therm. Eng. 2006, 26, 777–786. [Google Scholar] [CrossRef]
- Del Coz Díaz, J.; Nieto, P.G.; Biempica, C.B.; Gero, M.P. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method. Appl. Therm. Eng. 2007, 27, 1445–1456. [Google Scholar] [CrossRef]
- Del Coz Díaz, J.; Nieto, P.G.; Hernández, J.D.; Rabanal, F.Á. A fem comparative analysis of the thermal efficiency among floors made up of clay, concrete and lightweight concrete hollow blocks. Appl. Therm. Eng. 2010, 30, 2822–2826. [Google Scholar] [CrossRef]
Specimen | CP | CP1 | CP2 | CP3 | CP4 | EP | EP1 | EP2 | EP3 | EP4 | CP5 | EP5 | EP6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
major axis (mm) | 29 | 25 | 27 | 31 | 35 | 43 | 37 | 40 | 46 | 52 | 35 | 49 | 39 |
minor axis (mm) | 29 | 25 | 27 | 31 | 35 | 28 | 24 | 26 | 30 | 33 | 35 | 25 | 31 |
eccentricity | 0 | 0 | 0 | 0 | 0 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0 | 0.87 | 0.60 |
porosity | 35% | 25% | 30% | 40% | 50% | 35% | 25% | 30% | 40% | 50% | 35% | 35% | 35% |
number of cavities | 7 | 7 | 7 | 7 | 7 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
minimum width (mm) | 190 | 253 | 220 | 161 | 109 | 168 | 235 | 200 | 138 | 84 | 253 | 109 | 212 |
Specimen | CP | EP | CP5 | EP5 | EP6 |
---|---|---|---|---|---|
eccentricity | 0 | 0.77 | 0 | 0.87 | 0.6 |
porosity | 35% | 35% | 35% | 35% | 35% |
stress concentration factor (load 2a) | 2.01 | 2.04 | 1.99 | 2.07 | 2.02 |
Normalized Ratio (load 2a) | 1.00 | 1.02 | 0.99 | 2.07 | 2.05 |
ultimate strength (load 2a) (MPa) | 4.68 | 4.67 | 4.68 | 4.65 | 4.67 |
Normalized Ratio (load 2a) | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 |
stress concentration factor (load 2b) | 5.39 | 4.42 | 6.91 | 3.39 | 5.65 |
Normalized Ratio (load 2b) | 1.00 | 0.84 | 1.28 | 0.63 | 1.08 |
ultimate strength (load 2b) (MPa) | 3.08 | 3.25 | 1.99 | 3.84 | 2.74 |
Normalized Ratio (load 2b) | 1.00 | 1.06 | 0.65 | 1.25 | 0.89 |
stress concentration factor Ratio (load 2c) | 4.08 | 4.98 | 3.31 | 6.83 | 3.79 |
Normalized Ratio (load 2c) | 1.00 | 1.22 | 0.81 | 1.67 | 0.93 |
ultimate strength (load 2c) (MPa) | 3.27 | 2.90 | 4.05 | 1.89 | 3.59 |
Normalized Ratio (load 2c) | 1.00 | 0.89 | 1.24 | 0.58 | 1.10 |
Stress under bending (load 2d) (MPa) | 0.64 | 0.63 | 0.69 | 0.62 | 0.65 |
Normalized Ratio (load 2d) | 1.00 | 0.98 | 1.07 | 0.97 | 1.02 |
ultimate bending load (load 2d) (N·m) | 941.25 | 977.92 | 905.67 | 1001.85 | 936.59 |
Normalized Ratio (load 2d) | 1.00 | 1.04 | 0.96 | 1.06 | 0.99 |
contact stress (MPa) (load 2e) | 13.65 | 12.62 | 18.01 | 8.33 | 15.43 |
Normalized Ratio (load 2e) | 1.00 | 0.90 | 1.29 | 0.60 | 1.11 |
the ultimate contact strength (load 2e) (N) | 52.75 | 57.05 | 39.98 | 86.49 | 46.66 |
Normalized Ratio (load 2e) | 1.00 | 1.11 | 0.78 | 1.68 | 0.91 |
Specimen | CP | CP1 | CP2 | CP3 | CP4 | EP | EP1 | EP2 | EP3 | EP4 |
---|---|---|---|---|---|---|---|---|---|---|
eccentricity | 0 | 0 | 0 | 0 | 0 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 |
porosity | 35% | 25% | 30% | 40% | 50% | 35% | 25% | 30% | 40% | 50% |
stress concentration factor (load 2a) | 2.01 | 1.78 | 1.88 | 2.2 | 2.64 | 2.04 | 1.78 | 1.9 | 2.22 | 2.62 |
stress concentration factor (load 2b) | 5.39 | 3.69 | 4.34 | 6.19 | 8.32 | 4.42 | 3.49 | 3.79 | 4.86 | 6.76 |
stress concentration factor (load 2c) | 4.08 | 3.06 | 3.43 | 4.59 | 6.57 | 4.98 | 3.61 | 4.41 | 6.02 | 9.41 |
maximum stress under bending (kN·m) | 0.64 | 0.68 | 0.67 | 0.63 | 0.59 | 0.63 | 0.66 | 0.65 | 0.60 | 0.55 |
contact stress (MPa) | 13.65 | 11.73 | 12.31 | 16.11 | 22.96 | 12.62 | 10.85 | 11.20 | 14.86 | 20.68 |
Specimen | CP | CP1 | CP2 | CP3 | CP4 | EP | EP1 | EP2 | EP3 | EP4 |
---|---|---|---|---|---|---|---|---|---|---|
eccentricity | 0 | 0 | 0 | 0 | 0 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 |
porosity | 35% | 25% | 30% | 40% | 50% | 35% | 25% | 30% | 40% | 50% |
ultimate strength (load 2a) (MPa) | 4.68 | 5.42 | 5.05 | 4.33 | 3.59 | 4.67 | 5.40 | 5.03 | 4.31 | 3.60 |
ultimate strength (load 2b) (MPa) | 3.08 | 4.06 | 3.54 | 2.54 | 1.82 | 3.25 | 4.09 | 3.64 | 2.89 | 2.07 |
ultimate strength (load 2c) (MPa) | 3.27 | 4.52 | 3.92 | 2.68 | 1.55 | 2.90 | 4.24 | 3.52 | 2.32 | 1.34 |
ultimate bending load (N·m) | 941.25 | 1046.85 | 977.64 | 913.52 | 819.67 | 977.92 | 1057.66 | 1011.18 | 944.96 | 960.78 |
the ultimate contact strength (N) | 52.75 | 61.38 | 58.49 | 44.69 | 31.36 | 57.05 | 66.36 | 64.29 | 48.45 | 34.82 |
Specimen | CP | CP1 | CP2 | CP3 | CP4 | EP | EP1 | EP2 | EP3 | EP4 | CP5 | EP5 | EP6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
eccentricity | 0 | 0 | 0 | 0 | 0 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0 | 0.87 | 0.6 |
porosity | 35% | 25% | 30% | 40% | 50% | 35% | 25% | 30% | 40% | 50% | 35% | 35% | 35% |
Heat flow (J/s) | 106.25 | 124.89 | 119.37 | 96.94 | 75.63 | 95.50 | 116.47 | 108.09 | 83.75 | 59.05 | 115.01 | 79.78 | 111.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Hu, M.; Huang, Y.; Cui, N.; Wang, W. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall. Materials 2018, 11, 615. https://doi.org/10.3390/ma11040615
Huang S, Hu M, Huang Y, Cui N, Wang W. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall. Materials. 2018; 11(4):615. https://doi.org/10.3390/ma11040615
Chicago/Turabian StyleHuang, Shiping, Mengyu Hu, Yonghui Huang, Nannan Cui, and Weifeng Wang. 2018. "A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall" Materials 11, no. 4: 615. https://doi.org/10.3390/ma11040615