Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructural Characterization
3.2. DRX Modeling and Microstructure Evolution
3.3. Corrosion Behavior
4. Conclusions
- (1)
- The Mg-9Li-3Al-2Sr-2Y alloy presents obvious dual-phase structure, which is comprised of β-Li matrix, α-Mg phases with petal-like shape, continuous Al4Sr phases and globular Al2Y phases.
- (2)
- The strain–stress curves are affected considerably by deformation temperatures and deformation strain rates. With the increasing of stress rate or decreasing of deformation temperature, the flow stress increased.
- (3)
- The onset of DRX occurred before the peak stress, and the volume fraction of DRX grains under different deformation conditions were calculated by an Avrami type equation. With the strain increases, the DRX volume fraction increases and reaches completion of the DRX process.
- (4)
- The Mg-9Li-3Al-2Sr-2Y alloy has better corrosion resistance than the Mg-9Li-3Al alloy. This phenomenon is attributed to the massive and continuous Al4Sr phase, which acts as a continuous barrier to protect the Mg-Li matrix.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, J.; Jeong, H.J.; Moon, Y.; Kim, K.B.; Son, H.T.; Jeon, C.; Sim, J.W.; Moon, S.; Park, J.M. Microstructure and mechanical properties of the as-cast and warm rolled Mg-9Li-x(Al-Si)-yTi alloys with x = 1, 3, 5 and y = 0.05 wt %. J. Alloys Compd. 2017, 711, 243–249. [Google Scholar] [CrossRef]
- Yan, Y.; Xiaodong, P.; Weidong, X.; Guobing, W.; Feng, X.; Qunyi, W. Microstructure and Mechanical Behavior of a New α + β-Type Mg-9Li-3Al-2.5Sr Alloy. Rare Met. Mater. Eng. 2014, 43, 1281–1285. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, D.K.; Wu, R.Z.; Chen, X.B.; Peng, Q.M.; Jin, L.; Xin, Y.C.; Zhang, Z.Q.; Liu, Y.; Chen, X.H.; et al. What is going on in magnesium alloys? J. Mater. Sci. Technol. 2017, 34, 245–247. [Google Scholar] [CrossRef]
- Zeng, Y.; Jiang, B.; Zhang, M.; Yin, H.; Li, R.; Pan, F. Effect of Mg24Y5 intermetallic particles on grain refinement of Mg-9Li alloy. Intermetallics 2014, 45, 18–23. [Google Scholar] [CrossRef]
- Chang, L.-L.; Shi, C.-C.; Cui, H.-W. Enhancement of mechanical properties of duplex Mg-9Li-3Al alloy by Sn and Y addition. Trans. Nonferr. Met. Soc. 2018, 28, 30–35. [Google Scholar] [CrossRef]
- Maurya, R.; Siddiqui, A.R.; Balani, K. In vitro degradation and biomineralization ability of hydroxyapatite coated Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys. Surf. Coat. Technol. 2017, 325, 65–74. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Asif, M.; Chen, X. Corrosion behavior of magnesium-graphene composites in sodium chloride solutions. J. Magnes. Alloy 2017, 5, 271–276. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zhang, F.; Song, L.; Zeng, R.C.; Li, S.Q.; Han, E.H. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy. J. Alloys Compd. 2017, 728, 815–826. [Google Scholar] [CrossRef]
- Li, C.Q.; Xu, D.K.; Chen, X.B.; Wang, B.J.; Wu, R.Z.; Han, E.H.; Birbilis, N. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys. Electrochim. Acta 2017, 260, 55–64. [Google Scholar] [CrossRef]
- Song, Y.; Shan, D.; Chen, R.; Han, E.-H. Corrosion characterization of Mg–8Li alloy in NaCl solution. Corros. Sci. 2009, 51, 1087–1094. [Google Scholar] [CrossRef]
- Yang, J.; Peng, J.; Nyberg, E.A.; Pan, F.S. Effect of Ca addition on the corrosion behavior of Mg–Al–Mn alloy. Appl. Surf. Sci. 2016, 369, 92–100. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Volinsky, A.A.; Tian, B.; Song, K.; Wang, B.; Liu, Y. Hot workability and constitutive model of the Cu-Zr-Nd alloy. Vacuum 2017, 146, 35–43. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, X.; Wen, H.; Zheng, B.; Zhou, Y.; Xie, W.; Lavernia, E.J. Influence of Extrusion on the Microstructure and Mechanical Behavior of Mg-9Li-3Al-xSr Alloys. Metall. Mater. Trans. A 2012, 44, 1101–1113. [Google Scholar] [CrossRef]
- Bergström, Y. A dislocation model for the stress–strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations. Mater. Sci. Eng. 1970, 5, 193–200. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, L.; Sun, Y. Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy. J. Alloys Compd. 2013, 580, 262–269. [Google Scholar] [CrossRef]
- Ebrahimi, G.R.; Momeni, A.; Kazemi, S.; Alinejad, H. Flow curves, dynamic recrystallization and precipitation in a medium carbon low alloy steel. Vacuum 2017, 142, 135–145. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Shen, W.; Liu, C.; Xia, Y.; Li, R. Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel. Mater. Des. 2016, 90, 804–814. [Google Scholar] [CrossRef]
- Han, Y.; Yan, S.; Yin, B.; Li, H.; Ran, X. Effects of temperature and strain rate on the dynamic recrystallization of a medium-high-carbon high-silicon bainitic steel during hot deformation. Vacuum 2018, 148, 78–87. [Google Scholar] [CrossRef]
- Quan, G.-Z.; Li, G.-S.; Chen, T.; Wang, Y.-X.; Zhang, Y.-W.; Zhou, J. Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates. Mater. Sci. Eng. A 2011, 528, 4643–4651. [Google Scholar] [CrossRef]
- Xu, L.; Chen, L.; Chen, G.; Wang, M. Hot deformation behavior and microstructure analysis of 25Cr3Mo3NiNb steel during hot compression tests. Vacuum 2018, 147, 8–17. [Google Scholar] [CrossRef]
- Shen, F.; Wang, B.; Liu, H.; Jiang, Y.; Tang, C.; Shou, W.; Pan, S.; Chen, Y.; Yi, D. Effects of secondary particle-induced recrystallization on fatigue crack growth in AA2524/Al Cu Mg T3 alloy sheets. J. Alloys Compd. 2016, 685, 571–580. [Google Scholar] [CrossRef]
- Pereloma, E.V.; Mannan, P.; Casillas, G.; Saleh, A.A. Particle stimulated nucleation during dynamic and metadynamic recrystallisation of Ni-30%Fe-Nb-C alloy. Mater. Charact. 2017, 125, 94–98. [Google Scholar] [CrossRef]
- Zhang, W.; Wei, Q.; Huo, W.T.; Lu, J.W.; Hu, J.J.; Zhang, Y.S. Dynamic recrystallization in nanocrystalline AZ31 Mg-alloy. Vacuum 2017, 143, 236–240. [Google Scholar] [CrossRef]
- Sun, Y.-H.; Wang, R.-C.; Peng, C.-Q.; Feng, Y.; Yang, M. Corrosion behavior and surface treatment of superlight Mg–Li alloys. Trans. Nonferr. Met. Soc. 2017, 27, 1455–1475. [Google Scholar] [CrossRef]
- Arthanari, S.; Nallaiyan, R.; Seon, S.K. Electrochemical corrosion behavior of acid treated strip cast AM50 and AZX310 magnesium alloys in 3.5 wt % NaCl solution. J. Magnes. Alloy 2017, 5, 277–285. [Google Scholar] [CrossRef]
- Ninlachart, J.; Raja, K.S. Passivation kinetics of Mg-Nd-Gd-Zn-Zr (EV31A) and Mg-Y-Nd-Gd-Zr (WE43C) in NaOH solutions. J. Magnes. Alloy 2017, 5, 254–270. [Google Scholar] [CrossRef]
- Luo, X.; Dang, S.; Kang, L. Compression deformation behavior of AZ81 magnesium alloy at elevated temperatures. Adv. Mater. Sci. Eng. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, N.; Babu, S.P.K.; Sundarrajan, S. Corrosion behavior of as-cast Mg–8Li–3Al+xCe alloy in 3.5 wt % NaCl solution. Int. J. Miner. Metall. Mater. 2016, 23, 1196–1203. [Google Scholar] [CrossRef]
- Xu, D.K.; Han, E.H. Effect of quasicrystalline phase on improving the corrosion resistance of a duplex structured Mg-Li alloy. Scr. Mater. 2014, 71, 21–24. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Xie, W.; Wei, G.; Yang, Y.; Liu, J.; Xu, T.; Xie, W.; Peng, X. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy. Materials 2018, 11, 408. https://doi.org/10.3390/ma11030408
Liu G, Xie W, Wei G, Yang Y, Liu J, Xu T, Xie W, Peng X. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy. Materials. 2018; 11(3):408. https://doi.org/10.3390/ma11030408
Chicago/Turabian StyleLiu, Gang, Wen Xie, Guobing Wei, Yan Yang, Junwei Liu, Tiancai Xu, Weidong Xie, and Xiaodong Peng. 2018. "Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy" Materials 11, no. 3: 408. https://doi.org/10.3390/ma11030408
APA StyleLiu, G., Xie, W., Wei, G., Yang, Y., Liu, J., Xu, T., Xie, W., & Peng, X. (2018). Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy. Materials, 11(3), 408. https://doi.org/10.3390/ma11030408