Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Sb2S3 Thin Film and Li-Doped TiO2
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, L.; Li, D.B.; Li, K.H.; Chen, C.; Deng, H.X.; Gao, L.; Zhao, Y.; Jiang, F.; Li, L.Y.; Huang, F.; et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2017, 2, 17046. [Google Scholar] [CrossRef]
- Nasr, T.B.; Maghraoui-Meherzi, H.; Kamoun-Turki, N. First-principles study of electronic, thermoelectric and thermal properties of Sb2S3. J. Alloys Compd. 2016, 663, 123–127. [Google Scholar] [CrossRef]
- Wang, X.M.; Li, J.M.; Liu, W.F.; Yang, S.F.; Zhu, C.F.; Chen, T.A. Fast Chemical Approach towards Sb2S3 Film with Large Grain Size for High-Performance Planar Heterojunction Solar Cells. Nanoscale 2017, 9, 3386–3390. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Jiang, K.J.; Huang, J.H.; Zhang, Y.; Bao, B.; Zhou, X.Q.; Wang, H.J.; Guan, B.; Yang, L.M.; Song, Y.L. Solid-state nanocrystalline solar cells with an antimony sulfide absorber deposited by an in situ solid–gas reaction. J. Mater. Chem. A 2017, 5, 4791–4796. [Google Scholar] [CrossRef]
- Shang, M.H.; Zhang, J.; Wei, S.H.; Zhu, Y.J.; Wang, L.; Hou, H.L.; Wu, Y.L.; Fujikawa, T.; Ueno, N. Bi-doped Sb2S3 for low effective mass and optimized optical properties. J. Mater. Chem. C 2016, 4, 5081–5090. [Google Scholar] [CrossRef]
- Ito, S.; Tsujimoto, K.; Nguyen, D.C.; Manabe, K.; Nishino, H. Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency. Int. J. Hydrogen Energy 2013, 38, 16749–16754. [Google Scholar] [CrossRef]
- Choi, Y.C.; Lee, D.U.; Noh, J.H.; Kim, E.K.; Seok, S.I. Highly Improved Sb2S3 Sensitized-Inorganic–Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy. Adv. Funct. Mater. 2014, 24, 3587–3592. [Google Scholar] [CrossRef]
- Marquina, R.G.S.; Sanchez, T.G.; Mathews, N.R.; Mathew, X. Vacuum coated Sb2S3 thin films: Thermal treatment and the evolution of its physical properties. Mater. Res. Bull. 2017, 90, 285–294. [Google Scholar] [CrossRef]
- Garcia, R.G.A.; Avendaño, C.A.M.; Mou, P.; Delgado, F.P.; Mathews, N.R. Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: Effect of thermal treatment on structural, optical and electrical properties. Mater. Sci. Semicond. Process. 2016, 44, 91–100. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.Q.; Zhu, H.B.; Wang, Y.; Liang, B.L.; Chen, J.W.; Xu, Y.; Mai, Y.H. CdS/Sb2S3 heterojunction thin film solar cells with a thermally evaporated absorber. J. Mater. Chem. C 2017, 5, 9421. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Grimes, C.A.; Feng, X.J.; Zhang, X.Y.; Komarneni, S.; Zanoni, M.V.B.; Bao, N.Z. Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic–inorganic thin film photovoltaics. Chem. Commun. 2012, 48, 2818–2820. [Google Scholar] [CrossRef] [PubMed]
- Escorcia-García, J.; Becerra, D.; Nair, M.T.S.; Nair, P.K. Heterojunction CdS/Sb2S3 solar cells using antimony sulfide thin films prepared by thermal evaporation. Thin Solid Films 2014, 569, 28–34. [Google Scholar] [CrossRef]
- Mayon, Y.O.; White, T.P.; Wang, R.; Yang, Z.; Catchpole, K.R. Evaporated and solution deposited planar Sb2S3 solar cells: A comparison and its significance. Phys. Status Solidi A 2016, 213, 108–113. [Google Scholar] [CrossRef]
- Zimmermann, E.; Pfadler, T.; Kalb, J.; Dorman, J.A.; Sommer, D.; Hahn, G.; Weickert, J.; Schmidt-Mende, L. Toward High Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells. Adv. Sci. 2015, 2, 1500059. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, D.; Gonzaga-Sánchez, J.D.; Bray-Sánchez, F.D.; Vázquez-García, G.; Escorcia-García, J.; Nair, M.T.S.; Nair, P.K. Simple solar cells of 3.5% efficiency with antimony sulfide-selenide thin films. Phys. Status Solidi RRL 2016, 10, 388–396. [Google Scholar] [CrossRef]
- O’Mahony, F.T.F.; Lutz, T.; Guijarro, N.; Gómez, R.; Haque, S.A. Electron and hole transfer at metal oxide/Sb2S3/spiro-OMeTAD heterojunctions. Energy Environ. Sci. 2012, 5, 9760–9764. [Google Scholar] [CrossRef]
- Boix, P.P.; Larramona, G.; Jacob, A.; Delatouche, B.; Mora-Seró, I.; Bisquert, J. Hole Transport and Recombination in All-Solid Sb2S3-Sensitized TiO2 Solar Cells Using CuSCN As Hole Transporter. J. Phys. Chem. C 2012, 116, 1579–1587. [Google Scholar] [CrossRef]
- Itzhaik, Y.; Niitsoo, O.; Page, M.; Hodes, G. Sb2S3-Sensitized Nanoporous TiO2 Solar Cells. J. Phys. Chem. C 2009, 113, 4254–4256. [Google Scholar] [CrossRef]
- Parize, R.; Katerski, A.; Gromyko, I.; Rapenne, L.; Roussel, H.; Kärber, E.; Appert, E.; Krunks, M.; Consonni, V. Phosphonic Acid and Lithium Salt as Effective p-Dopants to Oxidize Spiro-OMeTAD for Mesoscopic Sb2S3 Solar Cells. J. Phys. Chem. C 2017, 121, 9672–9680. [Google Scholar] [CrossRef]
- Yuan, S.J.; Deng, H.; Dong, D.D.; Yang, X.K.; Qiao, K.K.; Hu, C.; Song, H.B.; Song, H.S.; He, Z.B.; Tang, J. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth. Sol. Energy Mater. Sol. Cells 2016, 157, 887–893. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Shi, J.J.; Xu, X.; Zhu, L.F.; Luo, Y.H.; Li, D.M.; Meng, Q.B. Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%. J. Mater. Chem. A 2016, 4, 15383. [Google Scholar] [CrossRef]
- Giordano, F.; Abate, A.; Baena, J.P.C.; Saliba, M.; Matsui, T.; Im, S.H.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Hagfeldt, A.; Graetzel, M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 2016, 7, 10379. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.T.; Li, S.B.; Zhang, P.; Wang, Y.F.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z.M.; Chen, Z.D. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 2017, 31, 462–468. [Google Scholar] [CrossRef]
- Zhou, H.W.; Shi, Y.T.; Dong, Q.S.; Zhang, H.; Xing, Y.J.; Wang, K.; Du, Y.; Ma, T.L. Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 2014, 5, 3241–3246. [Google Scholar] [CrossRef] [PubMed]
- Södergren, S.; Siegbahn, H.; Rensmo, H.; Lindström, H.; Hagfeldt, A.A.; Lindquist, S.E. Lithium Intercalation in Nanoporous Anatase TiO2 Studied with XPS. J. Phys. Chem. B 1997, 101, 3087–3090. [Google Scholar] [CrossRef]
- Bouattour, S.; Kallel, W.; Rego, A.M.B.D.; Ferreira, L.F.V.; Machado, I.F.; Boufi, S. Li-doped nanosized TiO2 powder with enhanced photocalatylicacivity under sunlight irradiation. Appl. Organomet. Chem. 2010, 24, 692–699. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2001; pp. 167–171. [Google Scholar]
- Liang, G.-X.; Fan, P.; Luo, J.-T.; Gu, D.; Zheng, Z.-H. A promising unisource thermal evaporation for in situ fabrication of organolead halide perovskite CH3NH3PbI3 thin film. Prog. Photovolt. Res. Appl. 2015, 23, 1901–1907. [Google Scholar] [CrossRef]
- Hassanien, A.S.; Akl, A.A. Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J. Alloys Compd. 2015, 648, 280–290. [Google Scholar] [CrossRef]
- Perales, F.; Lifante, G.; Agullórueda, F.; De, H.C. Optical and structural properties in the amorphous to polycrystalline transition in Sb2S3 thin films. J. Phys. D: Appl. Phys. 2007, 40, 2440–2444. [Google Scholar] [CrossRef]
- Wang, K.; Shi, Y.T.; Li, B.; Zhao, L.; Wang, W.; Wang, X.Y.; Bai, X.G.; Wang, S.F.; Hao, C.; Ma, T.L. Amorphous Inorganic Electron-Selective Layers for Efficient Perovskite Solar Cells: Feasible Strategy Towards Room Temperature Fabrication. Adv. Mater. 2016, 28, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Jiang, G.; Liu, W.; Yang, S.; Zhu, C.; Chen, T. Selenium-Graded Sb2(S1−xSex)3 for Planar Heterojunction Solar Cell Delivering a Certified Power Conversion Efficiency of 5.71%. Sol. RRL 2017, 1, 1700017. [Google Scholar] [CrossRef]
Mesoporous TiO2 | Voc (V) | Jsc (mA/cm2) | FF | PCE (%) | Rs (Ω cm2) | Rsh (Ω·cm2) | |
---|---|---|---|---|---|---|---|
Undoped-TiO2 | champion | 0.595 | 13.8 | 0.45 | 3.74 | 87 | 168 |
Average | 0.591 | 10.4 | 0.28 | 1.79 | - | - | |
0.05Li-TiO2 | champion | 0.595 | 13.2 | 0.41 | 3.19 | 57 | 100 |
Average | 0.606 | 10.9 | 0.30 | 1.93 | - | - | |
0.1Li-TiO2 | champion | 0.635 | 14.1 | 0.45 | 4.03 | 69 | 123 |
Average | 0.606 | 13.5 | 0.45 | 3.74 | - | - | |
0.2Li-TiO2 | champion | 0.635 | 15.0 | 0.46 | 4.42 | 68 | 149 |
Average | 0.629 | 14.3 | 0.45 | 4.03 | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, C.; Luo, J.; Lan, H.; Fan, B.; Peng, H.; Zhao, J.; Sun, H.; Zheng, Z.; Liang, G.; Fan, P. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells. Materials 2018, 11, 355. https://doi.org/10.3390/ma11030355
Lan C, Luo J, Lan H, Fan B, Peng H, Zhao J, Sun H, Zheng Z, Liang G, Fan P. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells. Materials. 2018; 11(3):355. https://doi.org/10.3390/ma11030355
Chicago/Turabian StyleLan, Chunfeng, Jingting Luo, Huabin Lan, Bo Fan, Huanxin Peng, Jun Zhao, Huibin Sun, Zhuanghao Zheng, Guangxing Liang, and Ping Fan. 2018. "Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells" Materials 11, no. 3: 355. https://doi.org/10.3390/ma11030355