Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells
Abstract
1. Introduction
2. Roles and Ideal Characteristics of HTM
3. Synthesis and Deposition of CuSCN HTM
4. Architectures Used for CuSCN-Based PSCs
4.1. n-i-p Architecture of CuSCN-Based PSCs
4.2. Inverted (p-i-n) Architecture of CuSCN-Based PSCs
5. Stability of CuSCN-Based PSCs
6. Recommendations and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Liu, X.; Li, J.; McKechnie, S. Interactions between molecules and perovskites in halide perovskite solar cells. Sol. Energy Mater. Sol. Cells 2018, 175, 1–19. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S.F. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B.; Greenough, R. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506. [Google Scholar] [CrossRef]
- Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396. [Google Scholar] [CrossRef]
- Da, Y.; Xuan, Y.; Li, Q. Quantifying energy losses in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 174, 206–213. [Google Scholar] [CrossRef]
- Salhi, B.; Wudil, Y.S.; Hossain, M.K.; Al-Ahmed, A.; Al-Sulaiman, F.A. Review of recent developments and persistent challenges in stability of perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 90, 210–222. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, C.R.; Im, J.H.; Lee, K.B.; Moehl, T.; Marchioro, A.; Moon, S.J.; Humphry-Baker, R.; Yum, J.H.; Moser, J.E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Cells, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, D.; Li, Z. Recent advances in the design of dopant-free hole transporting materials for highly efficient perovskite solar cells. Chin. Chem. Lett. 2018, 29, 219–231. [Google Scholar] [CrossRef]
- Hawash, Z.; Universitet, K.; Ono, L.K.; Qi, Y. Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells. Adva 2017, 5. [Google Scholar] [CrossRef]
- Galatopoulos, F.; Savva, A.; Papadas, I.T.; Choulis, S.A. The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells. APL Mater. 2017, 5, 1–8. [Google Scholar] [CrossRef]
- Uribe, J.; Ramirez, D.; Osorio-Guillen, J.; Osorio, J.; Jaramilo, F. CH3NH3CaI3 Perovskite: Synthesis, Characterization, and First-Principles Studies. J. Phys. Chem. 2016, 120, 16393–16398. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, M. Organic hole-transporting materials for efficient perovskite solar cells. Mater. Today Energy 2018, 7, 208–220. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Cai, B.; Yu, Z.; Sun, L. Progress in hole-transporting materials for perovskite solar cells. J. Energy Chem. 2018, 27, 650–672. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Deng, L.-L.; Dai, S.-M.; Wang, X.; Tian, C.-B.; Zhan, X.-X.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 2015, 3, 19353–19359. [Google Scholar] [CrossRef]
- Sun, J.; Lu, J.; Li, B.; Jiang, L.; Chesman, A.S.R.; Scully, A.D.; Gengenbach, T.R.; Cheng, Y.B.; Jasieniak, J.J. Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy 2018, 49, 163–171. [Google Scholar] [CrossRef]
- Yang, Y.; Pham, N.D.; Yao, D.; Zhu, H.; Yarlagadda, P.; Wang, H. Inorganic p-type semiconductors and carbon materials based hole transport materials for perovskite solar cells. Chin. Chem. Lett. 2018, 29, 1242–1250. [Google Scholar] [CrossRef]
- Christians, J.A.; Fung, R.C.M.; Kamat, P.V. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 2014, 136, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ye, S.; Rao, H.; Li, Y.; Liu, Z.; Xiao, L.; Chen, Z.; Bian, Z.; Huang, C. Room-Temperature and Solution-Processed Copper Iodide as Hole Transport Layer for Inverted Planar Perovskite Solar Cells. Nanoscale 2016, 8, 15954–15960. [Google Scholar] [CrossRef]
- Li, M.H.; Yum, J.H.; Moon, S.J.; Chen, P. Inorganic p-type semiconductors: Their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies 2016, 9, 331. [Google Scholar] [CrossRef]
- Han, G.; Du, W.H.; An, B.L.; Bruno, A.; Leow, S.W.; Soci, C.; Zhang, S.; Mhaisalkar, S.G.; Mathews, N. Nitrogen doped cuprous oxide as low cost hole-transporting material for perovskite solar cells. Scr. Mater. 2018, 153, 104–108. [Google Scholar] [CrossRef]
- Chen, J.; Park, N.-G. Inorganic Hole Transporting Materials for Stable and High Efficiency Perovskite Solar Cells. J. Phys. Chem. C 2018, 122, 14039–14063. [Google Scholar] [CrossRef]
- Jaffe, J.E.; Kaspar, T.C.; Droubay, T.C.; Varga, T.; Bowden, M.E.; Exarhos, G.J. Electronic and Defect Structures of CuSCN. J. Phys. Chem. C 2010, 114, 9111–9117. [Google Scholar] [CrossRef]
- Cho, A.; Park, N. Impact of Interfacial Layers in Perovskite Solar Cells. ChemSusChem 2017, 10, 3687–3704. [Google Scholar] [CrossRef] [PubMed]
- Abrusci, A.; Stranks, S.D.; Docampo, P.; Yip, H.; Jen, A.K.; Snaith, H.J. High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Lett. 2013, 13, 3124–3128. [Google Scholar] [CrossRef] [PubMed]
- Jeng, J.; Chiang, Y.; Lee, M.; Peng, S.; Guo, T.; Chen, P.; Wen, T. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.K.; Jiang, Z.Q.; Liao, L.S. New advances in small molecule hole-transporting materials for perovskite solar cells. Chin. Chem. Lett. 2016, 27, 1293–1303. [Google Scholar] [CrossRef]
- Calió, L.; Kazim, S.; Grätzel, M.; Ahmad, S. Hole-Transport Materials for Perovskite Solar Cells. Angew. Chem.-Int. Ed. 2016, 55, 14522–14545. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, P.; Singh, P.; Rana, P.J.S.; Garg, A.; Kar, P. Hole-Transporting Materials for Perovskite-Sensitized Solar Cells. Energy Technol. 2016, 4, 891–938. [Google Scholar] [CrossRef]
- Bui, T.; Ulfa, M.; Maschietto, F.; Ottochian, A.; Nghiêm, M.; Cio, I.; Goubard, F.; Pauporté, T. Design of dendritic core carbazole-based hole transporting materials for e ffi cient and stable hybrid perovskite solar cells. Org. Electron. 2018, 60, 22–30. [Google Scholar] [CrossRef]
- Vivo, P.; Salunke, J.K.; Priimagi, A. Hole-Transporting Materials for Printable Perovskite Solar Cells. Materials 2017, 10, 1087. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, Z.; Zhang, Y.; Lai, J.; Li, J.; Gurzadyan, G.G.; Yang, X.; Sun, L. High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly ( ethylenedioxythiophene ) as a Hole-Transporting Material. Sci. Total Environ. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Sarwar, S.; Mehran, M.T. Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv. 2017, 7, 17044–17062. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, L. Inorganic Hole-Transporting Materials for Perovskite Solar Cells. Small Methods 2017, 2, 1–6. [Google Scholar] [CrossRef]
- Premalal, E.V.A.; Kannangara, Y.Y.; Ratnayake, S.P.; Nalin de Silva, K.M. Facile Synthesis of Colored and Conducting CuSCN Composite Coated with CuS Nanoparticles. Nanoscale Res. Lett. 2017, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ezealigo, B.N.; Nwanya, A.C.; Simo, A.; Bucher, R.; Osuji, R.U.; Maaza, M.; Reddy, M.V.; Ezema, F.I. A study on solution deposited CuSCN thin films: Structural, electrochemical, optical properties. Arab. J. Chem. 2017. [Google Scholar] [CrossRef]
- Pattanasattayavong, P.; Promarak, V.; Anthopoulos, T. Electronic Properties of Copper (I) Thiocyanate (CuSCN). Adv. Electron. Mater. 2017, 3, 1–32. [Google Scholar] [CrossRef]
- Ding, T.; Wang, N.; Wang, C.; Wu, X.; Liu, W.; Zhang, Q.; Fan, W.; Sun, X.W. Solution-processed inorganic copper(i) thiocyanate as a hole injection layer for high-performance quantum dot-based light-emitting diodes. RSC Adv. 2017, 7, 26322–26327. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, H.; Feng, Z.; Lin, L.; Zhou, J.; Lin, Z. Electrochimica Acta n-ZnO nanorods/p-CuSCN heterojunction light-emitting diodes fabricated by electrochemical method. Electrochim. Acta 2010, 55, 4889–4894. [Google Scholar] [CrossRef]
- Petti, L.; Pattanasattayavong, P.; Lin, Y.H.; Münzenrieder, N.; Cantarella, G.; Yaacobi-Gross, N.; Yan, F.; Tröster, G.; Anthopoulos, T.D. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits. Appl. Phys. Lett. 2017, 110, 1–5. [Google Scholar] [CrossRef]
- Yang, I.S.; Sohn, M.R.; Sung, S.D.; Kim, Y.J.; Yoo, Y.J.; Kim, J.; Lee, W.I. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy 2017, 32, 414–421. [Google Scholar] [CrossRef]
- Bakr, Z.H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T.M.; Jose, R. Advances in hole transport materials engineering for stable and e ffi cient perovskite solar cells. Nano Energy 2017, 34, 271–305. [Google Scholar] [CrossRef]
- Madhavan, V.E.; Zimmermann, I.; Roldán-Carmona, C.; Grancini, G.; Buffiere, M.; Belaidi, A.; Nazeeruddin, M.K. Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1112–1117. [Google Scholar] [CrossRef]
- Hatch, S.M.; Briscoe, J.; Dunn, S. Improved CuSCN–ZnO diode performance with spray deposited CuSCN. Thin Solid Films 2013, 531, 404–407. [Google Scholar] [CrossRef]
- Xiong, Q.; Tian, H.; Zhang, J.; Han, L.; Lu, C.; Shen, B.; Zhang, Y.; Zheng, Y.; Lu, C.; Zeng, Z.; et al. CuSCN modified PEDOT:PSS to improve the efficiency of low temperature processed perovskite solar cells. Org. Electron. 2018, 61, 151–156. [Google Scholar] [CrossRef]
- Chaudhary, N.; Chaudhary, R.; Kesari, J.P.; Patra, A. An eco-friendly and inexpensive solvent for solution processable CuSCN as a hole transporting layer in organic solar cells. Opt. Mater. 2017, 69, 367–371. [Google Scholar] [CrossRef]
- Qin, P.; Tanaka, S.; Ito, S.; Tetreault, N.; Manabe, K.; Nishino, H.; Nazeeruddin, M.K.; Grätzel, M. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef]
- Sepalage, G.A.; Meyer, S.; Pascoe, A.R.; Scully, A.D.; Bach, U.; Cheng, Y.B.; Spiccia, L. A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cells. Nano Energy 2017, 32, 310–319. [Google Scholar] [CrossRef]
- Qiu, L.; Ono, L.K.; Qi, Y. Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology. Mater. Today Energy 2018, 7, 169–189. [Google Scholar] [CrossRef]
- Ramírez, D.; Riveros, G.; Álvarez, K.; González, B.; Pereyra, C.J.; Dalchiele, E.A.; Marotti, R.E.; Ariosa, D.; Martín, F.; Ramos-barrado, J.R. Electrochemical synthesis of CuSCN nanostructures, tuning the morphological and structural characteristics: From nanorods to nanostructured layers. Mater. Sci. Semicond. Process. 2017, 68, 226–237. [Google Scholar] [CrossRef]
- Shlenskaya, N.N.; Tutantsev, A.S.; Belich, N.A.; Goodilin, E.A.; Grätzel, M.; Tarasov, A.B. Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells. Mendeleev Commun. 2018, 28, 378–380. [Google Scholar] [CrossRef]
- Murugadoss, G.; Thangamuthu, R.; Senthil Kumar, S.M. Fabrication of CH3NH3PbI3 perovskite-based solar cells: Developing various new solvents for CuSCN hole transport material. Sol. Energy Mater. Sol. Cells 2017, 164, 56–62. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Hu, Z.; Qin, L.; Sun, X.; Huang, Y. In situ decoration of CuSCN nanorod arrays with carbon quantum dots for highly ef fi cient photoelectrochemical performance. Carbon 2017, 125, 344–351. [Google Scholar] [CrossRef]
- Wu, W.; Cui, S.; Yang, C.; Hu, G.; Wu, H. Electrochemistry Communications Electrochemically superfilling of n-type ZnO nanorod arrays with p-type CuSCN semiconductor. Electrochem. Commun. 2009, 11, 1736–1739. [Google Scholar] [CrossRef]
- Chappaz-Gillot, C.; Salazar, R.; Berson, S.; Ivanova, V. Insights into CuSCN nanowire electrodeposition on flexible substrates. Electrochim. Acta 2013, 110, 375–381. [Google Scholar] [CrossRef]
- Lv, Y.; Guo, Y.; Zhang, H.; Zhou, X.; Chen, H. Enhanced efficiency and stability of fully air-processed TiO2 nanorods array based perovskite solar cell using commercial available CuSCN and carbon. Sol. Energy 2018, 173, 7–16. [Google Scholar] [CrossRef]
- Karuppuchamy, S.; Murugadoss, G.; Ramachandran, K.; Saxena, V.; Thangamuthu, R. Inorganic based hole transport materials for perovskite solar cells. J. Mater. Sci. Mater. Electron. 2018, 29, 8847–8853. [Google Scholar] [CrossRef]
- Zhao, K.; Munir, R.; Yan, B.; Yang, Y.; Kim, T.; Amassian, A. Solution-processed inorganic copper(i) thiocyanate (CuSCN) hole transporting layers for efficient p-i-n perovskite solar cells. J. Mater. Chem. A 2015, 3, 20554–20559. [Google Scholar] [CrossRef]
- Chowdhury, T.H.; Akhtaruzzaman, M.; Kayesh, M.E.; Kaneko, R.; Noda, T.; Lee, J.J.; Islam, A. Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability. Sol. Energy 2018, 171, 652–657. [Google Scholar] [CrossRef]
- Wijeyasinghe, N.; Regoutz, A.; Eisner, F.; Du, T.; Tsetseris, L.; Lin, Y.H.; Faber, H.; Pattanasattayavong, P.; Li, J.; Yan, F.; et al. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Adv. Funct. Mater. 2017, 27, 1–13. [Google Scholar] [CrossRef]
- Song, Z.; Phillips, A.B.; Heben, M.J.; Song, Z.; Watthage, S.C.; Phillips, A.B.; Heben, M.J.; Song, Z.; Watthage, S.C.; Phillips, A.B. Pathways toward high-performance perovskite solar cells: Review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 2016, 6, 022001. [Google Scholar] [CrossRef]
- Ito, S.; Tanaka, S.; Vahlman, H.; Nishino, H.; Manabe, K.; Lund, P. Carbon-Double-Bond-Free Printed Solar Cells from TiO2/CH3NH3PbI3/CuSCN/Au: Structural Control and Photoaging Effects. ChemPhysChem 2014, 15, 1194–1200. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, G.; Liao, L.; Liu, D.; Zhou, G.; Xu, C.; Yang, X.; Wu, R.; Song, Q. Enhancing the open circuit voltage of PEDOT:PSS-PC61BM based inverted planar mixed halide perovskite solar cells from 0.93 to 1.05 V by simply oxidizing PC61 BM. Org. Electron. 2018, 59, 260–265. [Google Scholar] [CrossRef]
- Han, J.; Tu, Y.; Liu, Z.; Liu, X.; Ye, H.; Tang, Z.; Shi, T.; Liao, G. Efficient and stable inverted planar perovskite solar cells using dopant-free CuPc as hole transport layer. Electrochim. Acta 2018, 273, 273–281. [Google Scholar] [CrossRef]
- Guo, H.; Huang, X.; Pu, B.; Yang, J.; Chen, H.; Zhou, Y.; Yang, J.; Li, Y.; Wang, Z.; Niu, X. Efficiency enhancement in inverted planar perovskite solar cells by synergetic effect of sulfated graphene oxide (sGO) and PEDOT:PSS as hole transporting layer. RSC Adv. 2017, 7, 50410–50419. [Google Scholar] [CrossRef]
- Castro, E.; Murillo, J.; Fernandez-delgado, O.; Echegoyen, L. Progress in fullerene-based hybrid perovskite solar cells. J. Mater. Chem. C 2018, 6, 2635–2651. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, Z.; Cai, Y.; Zhou, Y.; Liu, H.; Lu, X.; Gao, X.; Shui, L.; Wu, S.; Liu, J. Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. J. Power Sources 2018, 396, 49–56. [Google Scholar] [CrossRef]
- Chavhan, S.; Miguel, O.; Grande, H.J.; Gonzalez-Pedro, V.; Sánchez, R.S.; Barea, E.M.; Mora-Seró, I.; Tena-Zaera, R. Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. J. Mater. Chem. A 2014, 2, 12754–12760. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef]
- Baranwal, A.K.; Kanda, H.; Shibayama, N.; Ito, S. Fabrication of fully non-vacuum processed perovskite solar cells using inorganic CuSCN hole-transporting material and carbon- back contact. Sustain. Energy Fuels 2018. [Google Scholar] [CrossRef]
- Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett. 2015, 15, 3723–3728. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Dall’Agnese, C.; Wang, X.-F.; Chen, G.; Li, M.-Z.; Song, J.-X.; Wei, Y.-J.; Miyasaka, T. Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. J. Photochem. Photobiol. A Chem. 2018, 357, 36–40. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Z.; Lai, J.; Song, X.; Yang, X.; Hagfeldt, A.; Sun, L. One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. J. Mater. Chem. A 2018, 6, 21435–21444. [Google Scholar] [CrossRef]
- Jung, M.; Kim, Y.C.; Jeon, N.J.; Yang, W.S.; Seo, J.; Noh, J.H.; Il Seok, S. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. ChemSusChem 2016, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.; Chen, J.; Park, N. Improvement of e ffi ciency and stability of CuSCN-based inverted perovskite solar cells by post-treatment with potassium thiocyanate. J. Solid State Chem. 2019, 269, 367–374. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Il Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, J.; Park, S.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Shin, H.W.; Ahn, T.K.; Noh, J.H.; Yoon, S.C.; et al. Il Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition. Adv. Mater. 2015, 27, 4013–4019. [Google Scholar] [CrossRef]
- Duong, T.; Peng, J.; Walter, D.; Xiang, J.; Shen, H.; Chugh, D.; Mark, N.; Zhong, D.; Li, J.; Weber, K.J.; et al. Perovskite Solar Cells Employing Copper Phthalocyanine Hole Transport Material with an Efficiency over 20% and Excellent Thermal Stability. ACS Energy Lett. 2018, 3, 2441–2448. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, F.; Chen, H.; Yang, X.; Su, H.; Cai, M.; Zhou, Z.; Noda, T.; Han, L. Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. Adv. Mater. 2017, 29, 1–8. [Google Scholar] [CrossRef]
- Chen, J.; Cai, X.; Yang, D.; Song, D.; Wang, J.; Jiang, J.; Ma, A.; Lv, S.; Hu, M.Z.; Ni, C. Recent progress in stabilizing hybrid perovskites for solar cell applications. J. Power Sources 2017, 355, 98–133. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Z.; Huang, X.; Shi, S.; Li, Y. Synergetic effects of acid treatment and localized surface plasmon resonance in PEDOT:PSS layers by doping HAuCl4 for efficient polymer solar cells. Org. Electron. 2018, 62, 121–132. [Google Scholar] [CrossRef]
- Lee, J.J.; Lee, S.H.; Kim, F.S.; Choi, H.H.; Kim, J.H. Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer. Org. Electron. 2015, 26, 191–199. [Google Scholar] [CrossRef]
- Meyer, E.; Mutukwa, D.; Zingwe, N.; Taziwa, R. Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties asWell as Their Viability to Replace Lead Halide Perovskites. Metals 2018, 3, 667. [Google Scholar] [CrossRef]
Solvent Mixture | Sample Codes | JSC (mAcm−2) | VOC (V) | FF (%) | PCE (%) |
---|---|---|---|---|---|
pristine dipropyl sulfide | S1 | 18.76 | 0.92 | 56.0 | 9.79 |
dipropyl sulfide and chlorobenzene (1:1) | S2 | 18.93 | 0.95 | 49.0 | 8.97 |
isopropanol and methylammonium iodide (MAI) (10 mg/mL) | S3 | 18.31 | 0.84 | 55.0 | 8.53 |
isopropanol and MAI ((1:2) +10 mg/mL) | S4 | 19.42 | 0.92 | 56.0 | 10.07 |
Starting Material | Solvent Used | Duration | Temp | Additives | Deposition | Thickness (nm) | Ref. |
---|---|---|---|---|---|---|---|
CuSO4, KSCN | DI water | RT | EDTA | Electrochemical | 70–90 | [54] | |
CuSO4, KSCN | DI water | RT | DEA | Electrochemical | [55] | ||
CuSO4, KSCN | DI water | RT | TEA, EDTA, CDTA, NTA | Electrochemical | 80 | [56] | |
CuSCN | Dipropyl sulfide | 4 h | RT | Spin-coating | 300 | [57] | |
CuSCN | Dipropyl sulfide | Overnight | RT | Doctor-blading | ~400 | [58] | |
CuSCN | Dipropyl sulfide | 5 h | RT | Spin-coating | 13 | [59] | |
CuSCN | Dipropyl sulfide | Overnight | RT | Spin-coating Doctor-blading | ~30 ~500 | [44] | |
CuSCN | DMSO | 2 h | RT | Spin-coating | [47] | ||
CuSCN | Dipropyl sulfide; Dipropyl sulfide + Chlorobenzene; Isopropanol + MAI; Dipropyl sulfide + isopropanol + MAI | Overnight | RT | Doctor-blading | 450 | [53] | |
CuSCN | Diethyl sulfide | RT | Spin-coating | 10–40 | [60] | ||
CuSCN | Diethyl sulfide, Ammonia | 1 h | 50 °C | Spin-coating | 3–5 | [61] |
Annealing Temp. (°C) | Jsc (mAcm−2) | Voc (V) | FF (%) | PCE (%) |
---|---|---|---|---|
90 | 13.04 | 0.49 | 49.0 | 3.1 |
100 | 14.27 | 0.67 | 48.1 | 4.5 |
110 | 14.4 | 0.73 | 61.7 | 6.4 |
120 | 11.1 | 0.45 | 53.8 | 2.7 |
Device | Jsc (mAcm−2) | Voc (V) | FF (%) | PCE (%) |
---|---|---|---|---|
Device A | 21.9 | 1.00 | 75.8 | 16.6 |
Device B | 21.4 | 0.92 | 68.1 | 13.4 |
Device Architecture | Device Type | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) | Year | Reference |
---|---|---|---|---|---|---|---|
FTO/compact TiO2/mesoporousTiO2/CsFAMAPbI3−xBrx/CuSCN/Al2O3/rGO/Au | M | 23.39 | 1.10 | 76.1 | 20.39 | 2017 | [70] |
FTO/blocking TiO2/mesoporous TiO2/(FAPbI3)0.85(MAPbBr3)0.15/CuSCN/Au | M | 23.1 | 1.04 | 75.3 | 18.0 | 2016 | [75] |
FTO/compact TiO2/mesoporousTiO2/CH3NH3PbI3/CuSCN/Au | M | 23.10 | 1.01 | 73.1 | 17.10 | 2017 | [42] |
ITO/CuSCN/MAPbI3−xClx/PC61BM/PEI/Ag | IP | 20.76 | 1.10 | 73.0 | 16.66 | 2018 | [74] |
ITO/CuSCN/CuI/MAPbI3−xClx/PC61BM/PEI/Ag | IP | 22.33 | 1.11 | 76.0 | 18.76 | 2018 | [74] |
FTO/compact TiO2/mesoporousTiO2/(FAPbI3)0.85(MAPbBr3)0.15/CuSCN/Au | M | 21.80 | 1.10 | 69.2 | 16.6 | 2016 | [44] |
ITO/CuSCN/CH3NH3PbI3/C60/BCP/Ag | IP | 21.9 | 1.00 | 75.8 | 15.6 | 2015 | [72] |
ITO/CuSCN/MAPbI3/PCBM/BCP/Ag | IP | 19.20 | 1.01 | 77.0 | 14.90 | 2019 | [76] |
ITO/rGO/CuSCN/CH3NH3PbI3/PCBM/BCP/Ag | IP | 18.21 | 1.03 | 76.1 | 14.28 | 2018 | [60] |
FTO/dense-TiO2/mesoporous TiO2/MAPbI3/CuSCN/Carbon | M | 18.90 | 0.96 | 68.0 | 12.41 | 2018 | [71] |
F:SnO2/TiO2/CH3NH3PbI3/CuSCN/Au | M | 19.7 | 1.02 | 62.0 | 12.4 | 2014 | [48] |
ITO/CuSCN/CH3NH3PbI3/LiF/Ag | IP | 15.76 | 1.06 | 63.2 | 10.8 | 2015 | [59] |
FTO/CuSCN-PEDOT:PSS/CH3NH3PbI3/Ag | IP | 17.6 | 0.86 | 71.7 | 10.09 | 2018 | [46] |
FTO/blocking TiO2/mesoporous TiO2/MAPbI3/CuSCN/Au | M | 16.82 | 0.89 | 61.4 | 9.20 | 2018 | [58] |
FTO/blocking TiO2/mesoporous TiO2/CH3NH3PbI3/CuSCN | M | 19.15 | 0.93 | 56.0 | 10.04 | 2017 | [53] |
FTO/compact TiO2/CH3NH3PbI3/CuSCN/Graphite | P | 19.3 | 0.84 | 59.6 | 9.6 | 2017 | [49] |
FTO/TiO2/CH3NH3PbI3−xClx/CuSCN/Au | P | 18.53 | 0.73 | 61.7 | 6.4 | 2014 | [69] |
FTO/dense-TiO2/nanocrystalline TiO2/CH3NH3PbI3/CuSCN/u | P | 14.5 | 0.63 | 53.0 | 4.85 | 2014 | [63] |
HTM | Jsc (mAcm−2) | Voc (V) | FF (%) | PCE (%) | Reference |
---|---|---|---|---|---|
CuSCN | 23.39 | 1.1 | 76.1 | 20.4 | [70] |
Spiro-OMeTAD | 24.57 | 1.11 | 79,2 | 21.6 | [2] |
PTAA | 24.1 | 1.1 | 81.90 | 22.1 | [77] |
NiO | 20.2 | 1.06 | 81.3 | 17.3 | [78] |
CuI | 22.8 | 1.01 | 73 | 16.8 | [20] |
CuPc | 23.19 | 1.13 | 73.1 | 18.68 | [79] |
Li0.05Mg0.15Ni0.8O | 22.68 | 1.12 | 77 | 19.58 | [80] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matebese, F.; Taziwa, R.; Mutukwa, D. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials 2018, 11, 2592. https://doi.org/10.3390/ma11122592
Matebese F, Taziwa R, Mutukwa D. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials. 2018; 11(12):2592. https://doi.org/10.3390/ma11122592
Chicago/Turabian StyleMatebese, Funeka, Raymond Taziwa, and Dorcas Mutukwa. 2018. "Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells" Materials 11, no. 12: 2592. https://doi.org/10.3390/ma11122592
APA StyleMatebese, F., Taziwa, R., & Mutukwa, D. (2018). Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials, 11(12), 2592. https://doi.org/10.3390/ma11122592