Development of Eco-Friendly Polymer Foam Using Overcoat Technology of Deodorant
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the Foam
2.3. Characterization and Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nielsen, L.E.; Landel, R.F. Mechanical Properties of Polymers and Composites, 2nd ed.; Mechanical Engineering; M. Dekker: New York, NY, USA, 1994; p. 557. [Google Scholar]
- Shastri, V.P.; Martin, I.; Langer, R. Macroporous polymer foams by hydrocarbon templating. Proc. Natl. Acad. Sci. USA 2000, 97, 1970–1975. [Google Scholar] [CrossRef] [PubMed]
- Demir, H.; Sipahioğlu, M.; Balköse, D.; Ülkü, S. Effect of additives on flexible PVC foam formation. J. Mater. Process. Technol. 2008, 195, 144–153. [Google Scholar] [CrossRef]
- Verdu, J.; Zoller, A.; Marcilla, A. Plastisol foaming process. Decomposition of the foaming agent, polymer behavior in the corresponding temperature range and resulting foam properties. Polym. Eng. Sci. 2013, 53, 1712–1718. [Google Scholar] [CrossRef]
- Patterson, J. Vinyl Foam: Effect of Density on Physical Properties. J. Vinyl Addit. Technol. 1998, 4, 26–29. [Google Scholar] [CrossRef]
- Reglero Ruiz, J.A.; Vincent, M.; Agassant, J.F.; Sadik, T.; Pillon, C.; Carrot, C. Polymer foaming with chemical blowing agents: Experiment and modeling. Polym. Eng. Sci. 2015, 55, 2018–2029. [Google Scholar] [CrossRef]
- Heck, R.L., III. A review of commercially used chemical foaming agents for thermoplastic foams. J. Vinyl Addit. Technol. 1998, 4, 113–116. [Google Scholar] [CrossRef]
- Sivertsen, K. Polymer Foams; Polymer Physics; Spring, Massachusetts Institute of Technology: Cambridge, MA, USA, 2007. [Google Scholar]
- Stehr, J. Chemical blowing agents in the rubber industry. Past–present–and future? Int. Polym. Sci. Technol. 2016, 43, 812–819. [Google Scholar] [CrossRef]
- Hurnik, H.; Finzenhagen, M.; Jeblick, W. New Blowing Agent Combination Based on Azodicarbonamide, Production Thereof and Use Thereof for Foaming Polymers. U.S. Patent 4,714,568.1987, 12 December 1987. [Google Scholar]
- Sims, G.; Jaafar, H. A chemical blowing agent system (CBAS) based on azodicarbonamide. J. Cell. Plast. 1994, 30, 175–188. [Google Scholar] [CrossRef]
- Marshall, R. Blowing agent decomposition in vinyl foams. J. Vinyl Technol. 1991, 13, 144–147. [Google Scholar] [CrossRef]
- Naguib, H.E.; Park, C.B.; Panzer, U.; Reichelt, N. Strategies for achieving ultra low-density polypropylene foams. Polym. Eng. Sci. 2002, 42, 1481–1492. [Google Scholar] [CrossRef]
- Guo, A.; Javni, I.; Petrovic, Z. Rigid polyurethane foams based on soybean oil. J. Appl. Polym. Sci. 2000, 77, 467–473. [Google Scholar] [CrossRef]
- Radovanović, R.; Jašo, V.; Pilić, B.; Stoiljković, D. Effect of PVC plastisol composition and processing conditions on foam expansion and tear strength. Hem. Ind. 2014, 68, 701–707. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y. Worker Health Hazard and Risk Assessment of Formamide using in Workplaces in South Korea. J. Korean Inst. Gas 2016, 20, 35–42. [Google Scholar] [CrossRef]
- Slovak, A. Occupational asthma caused by a plastics blowing agent, azodicarbonamide. Thorax 1981, 36, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Hale, R.C.; La Guardia, M.J.; Harvey, E.; Mainor, T.M. Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere 2002, 46, 729–735. [Google Scholar] [CrossRef]
- La Pagans, E.; Font, X.; Sánchez, A. Biofiltration for ammonia removal from composting exhaust gases. Chem. Eng. J. 2005, 113, 105–110. [Google Scholar] [CrossRef]
- Rahmani, A.; Mahvi, A.H.; Mesdaghinia, A.R.; Nasseri, S. Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite. Int. J. Environ. Sci. Technol. 2004, 1, 125–133. [Google Scholar] [CrossRef]
- Zhang, B.S.; Lv, X.F.; Zhang, Z.X.; Liu, Y.; Kim, J.K.; Xin, Z.X. Effect of carbon black content on microcellular structure and physical properties of chlorinated polyethylene rubber foams. Mater. Des. 2010, 31, 3106–3110. [Google Scholar] [CrossRef]
- Kim, B.G. Development of microwave foaming method for phenolic insulation foams. J. Mater. Process. Technol. 2008, 201, 716–719. [Google Scholar] [CrossRef]
- Lee, L.J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Polymer nanocomposite foams. Compos. Sci. Technol. 2005, 65, 2344–2363. [Google Scholar] [CrossRef]
- Gupta, R.; Kulkarni, G.U. Removal of organic compounds from water by using a gold nanoparticle–poly (dimethylsiloxane) nanocomposite foam. ChemSusChem 2011, 4, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Lee, L.J.; Widya, T.; Macosko, C. Polyurethane/clay nanocomposites foams: Processing, structure and properties. Polymer 2005, 46, 775–783. [Google Scholar] [CrossRef]
- Yokoi, T. Characterization of Zeolites by Advanced SEM/STEM Techniques; HITACHI: Tokyo, Japan, 2016. [Google Scholar]
- Ackley, M.W.; Rege, S.U.; Saxena, H. Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 2003, 61, 25–42. [Google Scholar] [CrossRef]
- Villota, R.; Hawkes, J.G.; Cochrane, H. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. Crit. Rev. Food Sci. Nutr. 1986, 23, 289–321. [Google Scholar] [CrossRef] [PubMed]
- Kim, S. The reduction of indoor air pollutant from wood-based composite by adding pozzolan for building materials. Constr. Build. Mater. 2009, 23, 2319–2323. [Google Scholar] [CrossRef]
- Collins, D.E.; Richey, F.A. Synthetic organic chemicals. In Riegel’s Handbook of Industrial Chemistry; Springer: Berlin, Germany, 1992; pp. 800–862. [Google Scholar]
- Jeong, J.; Kim, T.; Cho, W.J.; Chung, I. Synthesis and decomposition performance of a polymeric foaming agent containing a sulfonyl hydrazide moiety. Polym. Int. 2013, 62, 1094–1100. [Google Scholar]
- Kim, Y.S.; Harris, R.; Davis, R. Innovative Approach to Rapid Growth of Highly Clay-Filled Coatings on Porous Polyurethane Foam. ACS Macro Lett. 2012, 1, 820–824. [Google Scholar] [CrossRef]
- Kim, Y.S.; Li, Y.C.; Pitts, W.M.; Werrel, M.; Davis, R.D. Rapid Growing Clay Coatings to Reduce the Fire Threat of Furniture. ACS Appl. Mater. Interfaces 2014, 6, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.F.; Crum, J.R.; Boyd, S.A. Enhanced retention of organic contaminants by soils exchanged with organic cations. Environ. Sci. Technol. 1989, 23, 1365–1372. [Google Scholar] [CrossRef]
- Seredych, M.; Bandosz, T.J. Mechanism of Ammonia Retention on Graphite Oxides: Role of Surface Chemistry and Structure. J. Phys. Chem. C 2007, 111, 15596–15604. [Google Scholar] [CrossRef]
- MacAdam, D.L. Uniform color scales. JOSA 1974, 64, 1691–1702. [Google Scholar] [CrossRef]
Deodorant | Specific Gravity | Chromaticity | |
---|---|---|---|
L* | B* | ||
None (Referance) | 0.160 | 52.73 | 4.66 |
Gelite | 0.177 (1.03) | 27.29 | 18.66 |
HCl-gelite | 0.174 (0.91) | 59.29 | 10.76 |
Zeolite | 0.175 (0.92) | 65.89 | 14.13 |
Terra alba | 0.163 (0.80) | 70.33 | 5.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.J.; Cho, M.Y.; Kim, B.-H.; Lee, S. Development of Eco-Friendly Polymer Foam Using Overcoat Technology of Deodorant. Materials 2018, 11, 1898. https://doi.org/10.3390/ma11101898
Lee JJ, Cho MY, Kim B-H, Lee S. Development of Eco-Friendly Polymer Foam Using Overcoat Technology of Deodorant. Materials. 2018; 11(10):1898. https://doi.org/10.3390/ma11101898
Chicago/Turabian StyleLee, Jung Joon, Mi Yeon Cho, Bo-Hyun Kim, and Sunjong Lee. 2018. "Development of Eco-Friendly Polymer Foam Using Overcoat Technology of Deodorant" Materials 11, no. 10: 1898. https://doi.org/10.3390/ma11101898
APA StyleLee, J. J., Cho, M. Y., Kim, B.-H., & Lee, S. (2018). Development of Eco-Friendly Polymer Foam Using Overcoat Technology of Deodorant. Materials, 11(10), 1898. https://doi.org/10.3390/ma11101898