Next Article in Journal
Characterization of Early Age Curing and Shrinkage of Metakaolin-Based Inorganic Binders with Different Rheological Behavior by Fiber Bragg Grating Sensors
Next Article in Special Issue
Pheochromocytoma (PC12) Cell Response on Mechanobactericidal Titanium Surfaces
Previous Article in Journal
Organic Thin Film Transistors Incorporating Solution Processable Thieno[3,2-b]thiophene Thienoacenes
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Materials 2018, 11(1), 9; https://doi.org/10.3390/ma11010009

Arrest of Root Carious Lesions via Sodium Fluoride, Chlorhexidine and Silver Diamine Fluoride In Vitro

Department of Operative and Preventive Dentistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Aßmannshauser Str. 4-6, 14197 Berlin, Germany
*
Author to whom correspondence should be addressed.
Received: 20 November 2017 / Revised: 6 December 2017 / Accepted: 19 December 2017 / Published: 22 December 2017
(This article belongs to the Special Issue Physical Anti-Bacterial Nanostructured Biomaterials)
Full-Text   |   PDF [1009 KB, uploaded 22 December 2017]   |  

Abstract

Objective: To compare the root carious lesion arrest of chlorhexidine (CHX) and silver diamine fluoride (SDF) varnishes and/or sodium fluoride rinses (NaF) in vitro. Background: Effective and easily applicable interventions for treating root carious lesions are needed, as these lesions are highly prevalent amongst elderly individuals. Methods: In 100 bovine dentin samples, artificial root carious lesions were induced using acetic acid and a continuous-culture Lactobacillus rhamnosus biofilm model. One quarter of each induced lesion was excavated and baseline dentinal bacterial counts assessed as Colony-Forming-Units (CFU) per mg. Samples were allocated to one of four treatments (n = 25/group): (1) untreated control; (2) 38% SDF or (3) 35% CHX varnish, each applied once, plus 500 ppm daily NaF rinse in the subsequent lesion progression phase; and (4) daily NaF rinses only. Samples were re-transferred to the biofilm model and submitted to a cariogenic challenge. After six days, another quarter of each lesion was used to assess bacterial counts and the remaining sample was used to assess integrated mineral loss (ΔZ) using microradiography. Results: ΔZ did not differ significantly between control (median (25th/75th percentiles): 9082 (7859/9782) vol % × µm), NaF (6704 (4507/9574) and SDF 7206 (5389/8082)) (p < 0.05/Kruskal–Wallis test). CHX significantly reduced ΔZ (3385 (2447/4496)) compared with all other groups (p < 0.05). Bacterial numbers did not differ significantly between control (1451 (875/2644) CFU/µg) and NaF (750 (260/1401)) (p > 0.05). SDF reduced bacterial counts (360 (136/1166)) significantly compared with control (p < 0.05). CHX reduced bacterial counts (190 (73/517)) significantly compared with NaF and control (p < 0.05). Conclusion: CHX varnish plus regular NaF rinses arrested root carious lesions most successfully. View Full-Text
Keywords: root caries; caries arrest; silver diamine fluoride; chlorhexidine; sodium fluoride root caries; caries arrest; silver diamine fluoride; chlorhexidine; sodium fluoride
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Göstemeyer, G.; Schulze, F.; Paris, S.; Schwendicke, F. Arrest of Root Carious Lesions via Sodium Fluoride, Chlorhexidine and Silver Diamine Fluoride In Vitro. Materials 2018, 11, 9.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top