The Effect of Heat Treatment on the Emission Color of P-Doped Ca2SiO4 Phosphor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Red-Emitting P-Doped C2S:Eu3+ Phosphor
2.2. Green-Emitting P-Doped C2S:Eu2+ Phosphor
2.3. Green-Yellow-Emitting P-Doped C2S Phosphor with a Large Amount of Eu2+ Ions
3. Materials and Methods
4. Conclusions
- With red-emitting (Ca1.95Eu3+0.02□0.03)(Si0.94P0.06)O4+δ phosphor, the PL intensity increased with increasing annealing temperature, with the highest PL intensity reached when annealed at 1773 K. There was no significant change in the ratio of electric-dipole transition/magnetic-dipole transition during the annealing.
- With green-emitting (Ca1.95Eu2+0.02□0.03)(Si0.94P0.06)O4 phosphor, the highest PL intensity was observed when annealed at 1473 K. Because the phase composition was both α’L and β, there must be many α’L/β boundaries, which would provide a favorable luminescent environment of the Eu2+ ion in the host material. We confirmed that the Eu2+ ion preferentially occupied the Ca(1n) site, based on the simulation and experimental data. With increasing annealing temperature, the emission peak wavelength decreased due to the expansion of the Eu–O bond lengths.
- With the increase of the y-value for (Ca1.97–yEu2+y□0.03)(Si0.94P0.06)O4, the emission color accordingly changed from green (y = 0.02) to yellow (y = 0.5). This color change was caused by the increase of Eu2+ occupancy at the Ca(2n) site with respect to the Ca(1n) site.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Choi, S.-W.; Hong, S.-H. Characterization of Ca2SiO4: Eu2+ Phosphor Synthesized by Polymeric Precursor Process. J. Am. Ceram. Soc. 2009, 92, 2025–2028. [Google Scholar] [CrossRef]
- Jang, H.S.; Kim, H.Y.; Kim, Y.S.; Lee, H.M.; Jeon, D.Y. Yellow-emitting γ-Ca2SiO4:Ce3+, Li+ phosphor for solid-state lighting: luminescent properties, electronic structure and white light-emitting diode application. Opt. Express 2012, 20, 2761–2771. [Google Scholar]
- Zhang, Y.; Chen, J.; Li, Y.; Seo, H.J. Monitoring of hydroxyapatite conversion by luminescence intensity of Eu3+ ions during mineralization of Eu3+-doped β-Ca2SiO4. Opt. Mater. 2014, 37, 525–530. [Google Scholar] [CrossRef]
- Wei, F.; Jia, Q. Massive production of A2SiO4:Eu3+ and A2SiO4:Eu2+ (A = Ca, Sr, Ba) microspheres and luminescent properties. Superlattices Microstruct. 2015, 82, 11–17. [Google Scholar] [CrossRef]
- Sato, Y.; Kato, H.; Kobayashi, M.; Masaki, T.; Yoon, D.H.; Kakihana, M. Tailoring of deep-red luminescence in Ca2SiO4: Eu2+. Angew. Chem. Int. Ed. 2014, 53, 7756–7759. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Maki, I.; Ito, S.; Miyake, T. Structural change in phosphorus-bearing dicalcium silicates. J. Ceram. Soc. Jpn. 1997, 105, 117–121. [Google Scholar] [CrossRef]
- Furuya, S.; Nakano, H.; Yokoyama, N.; Banno, H.; Fukuda, K. Enhancement of photoluminescence intensity and structural change by doping of P5+ ion for Ca2–x/2(Si1–xPx)O4: Eu2+ green phosphor. J. Alloys Compd. 2016, 658, 147–151. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford: London, UK, 1997. [Google Scholar]
- Fukuda, K. Phenomenological analysis of αL’-to-β martensitic transformation in phosphorus-bearing dicalcium silicate. J. Mater. Res. 1999, 14, 460–464. [Google Scholar] [CrossRef]
- Fukuda, K.; Maki, I.; Ito, S. Structure change in strontium oxide-doped dicalcium silicates. J. Am. Ceram. Soc. 1996, 79, 2577–2581. [Google Scholar] [CrossRef]
- Fukuda, K.; Maki, I.; Ito, S. Thermal hysteresis for the α′L ↫ β transformations in strontium oxide-doped dicalcium silicates. J. Am. Ceram. Soc. 1996, 79, 2969–2970. [Google Scholar] [CrossRef]
- Nakano, H.; Yokoyama, N.; Banno, H.; Fukuda, K. Enhancement of PL intensity and formation of core-shell structure in annealed Ca2–x/2(Si1–xPx)O4:Eu2+ phosphor. Mater. Res. Bull. 2016, 83, 502–506. [Google Scholar] [CrossRef]
- Fujishiro, F.; Murakami, M.; Sekimoto, R.; Arakawa, T.; Hashimoto, T. Development of New Oxide Phosphors by Controlling Substitution Site of Lanthanide Ion. Nihon Daigaku Bunrigakubu Shizenkagakukenkyujo Kenkyukiyou 2012, 47, 475–487. Available online: http://www.chs.nihon-u.ac.jp/institute/nature/kiyou/2012/pdf/4_1.pdf (accessed on 27 February 2017). (In Japanese).
- Nakano, H.; Ozono, K.; Hayashi, H.; Fujihara, S. Synthesis and luminescent properties of a new Eu3+-doped Li1+x(Ta1–zNbz)1–xTixO3 Red phosphor. J. Am. Ceram. Soc. 2012, 95, 2795–2797. [Google Scholar] [CrossRef]
- Ichioka, H.; Furuya, S.; Asaka, T.; Nakano, H.; Fukuda, K. Crystal structures and enhancement of photoluminescence intensities by effective doping for lithium tantalate phosphors. Powder Diffr. 2015, 30, 326–332. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Jo, D.S.; Senthil, K.; Tezuka, S.; Kakihana, M.; Toda, K.; Masaki, T.; Yoon, D.H. Synthesis of high efficient Ca2SiO4:Eu2+ green emitting phosphor by a liquid phase precursor method. J. Solid State Chem. 2012, 189, 68–74. [Google Scholar] [CrossRef]
- Mori, K.; Kiyanagi, R.; Yonemura, M.; Iwase, K.; Sato, T.; Ito, K.; Sugiyama, M.; Kamiyama, T.; Fukunaga, T. Charge states of Ca atoms in β-dicalcium silicate. J. Solid State Chem. 2006, 179, 3286–3294. [Google Scholar] [CrossRef]
- Jost, K.H.; Ziemer, B.; Seydel, R. Redetermination of β-dicalcium silicate. Acta Crystallogr. 1977, B33, 1696–1700. [Google Scholar] [CrossRef]
- Udagawa, S.; Urabe, K.; Yano, T.; Takada, K.; Natsume, M. Studies on the Dusting of Ca2SiO4—The Crystal Structure of α’L-Ca2SiO4. Proc. Jpn. Cem. Eng. Assoc. 1979, 33, 35–37. [Google Scholar]
- Dickens, B.; Brown, W.E. The Crystal Structure of Ca5(PO4)2SiO4 (Silieo-Carnotite). Tschermaks Miner. Petrogr. Mitt. 1971, 16, 1–27. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [Google Scholar] [CrossRef]
- Tezuka, S.; Sato, Y.; Komukai, T.; Takatsuka, Y.; Kato, H.; Kakihana, M. Eu2+-Activated CaSrSiO4: a New Red-Emitting Oxide Phosphor for White-Light-Emitting Diodes. Appl. Phys. Express. 2013, 6, 072101-1-4. [Google Scholar] [CrossRef]
- Izumi, F.; Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 2007, 130, 15–20. [Google Scholar] [CrossRef]
- Brindley, G.W. The effect of grain or particle Size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods. Philos. Mag. 1945, 36, 347–369. [Google Scholar] [CrossRef]
- Young, R.A. Introduction to the Rietveld method. In The Rietveld Method; Young, R.A., Ed.; Oxford University Press: Oxford, UK, 1993; pp. 1–38. [Google Scholar]
Annealing Temperature (K) | λex (nm) | λem (nm) |
---|---|---|
1373 | 323 | 512 |
1473 | 324 | 512 |
1573 | 330 | 509 |
1673 | 322 | 497 |
1773 | 319 | 490 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, H.; Kamimoto, K.; Yokoyama, N.; Fukuda, K. The Effect of Heat Treatment on the Emission Color of P-Doped Ca2SiO4 Phosphor. Materials 2017, 10, 1000. https://doi.org/10.3390/ma10091000
Nakano H, Kamimoto K, Yokoyama N, Fukuda K. The Effect of Heat Treatment on the Emission Color of P-Doped Ca2SiO4 Phosphor. Materials. 2017; 10(9):1000. https://doi.org/10.3390/ma10091000
Chicago/Turabian StyleNakano, Hiromi, Konatsu Kamimoto, Nobuyuki Yokoyama, and Koichiro Fukuda. 2017. "The Effect of Heat Treatment on the Emission Color of P-Doped Ca2SiO4 Phosphor" Materials 10, no. 9: 1000. https://doi.org/10.3390/ma10091000