Photoelectric Properties of Si Doping Superlattice Structure on 6H-SiC(0001)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Device Structure and the Simulation Results
2.2. Experiments and Results Discussion
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Seely, J.F.; Kjornrattanawanich, B.; Holland, G.E.; Korde, R. Response of a SiC photodiode to extreme ultraviolet through visible radiation. Opt. Lett. 2005, 30, 3120–3122. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xin, X.; Zhao, J.H.; Yan, F.; Guan, B.; Seely, J.; Kjornrattanawanich, B. Highly sensitive visible-blind extreme ultraviolet Ni/4H-SiC Schottky photodiodes with large detection area. Opt. Lett. 2006, 31, 1591–1593. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Chen, Z.M.; Liu, B.; Li, L.B.; Feng, X.F. Identification and control of SiC polytypes in PVT method. J. Mater. Sci. Mater. Electron. 2010, 21, 326–330. [Google Scholar] [CrossRef]
- Liu, W.T.; Chen, Z.M. Feasibility of the light-activation in 4H-SiC thyristors. Power Electron. 2011, 45, 89–91. [Google Scholar] [CrossRef]
- Lin, S.H.; Chen, Z.M.; Liang, P.; Ba, Y.T.; Liu, S.J. Formation and suppression of misoriented grains in 6H-SiC crystals. CrystEngComm 2011, 13, 2709–2713. [Google Scholar] [CrossRef]
- Lin, S.H.; Chen, Z.M.; Li, L.B.; Yang, C. Effect of impurities on the Raman scattering of 6H-SiC crystals. Mater. Res. 2012, 15, 833–836. [Google Scholar] [CrossRef]
- Lin, S.H.; Chen, Z.M.; Yang, Y.; Liu, S.J.; Ba, Y.T.; Li, L.B.; Yang, C. Formation and evolution of micropipes in SiC crystals. CrystEngComm 2012, 14, 1588–1594. [Google Scholar] [CrossRef]
- Li, L.B.; Chen, Z.M.; Ren, Z.Q.; Gao, Z.J. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode. Chin. Phys. Lett. 2013, 30, 097304. [Google Scholar] [CrossRef]
- Li, L.B.; Chen, Z.M.; Liu, W.T.; Li, W.C. Electrical and photoelectric properties of p-Si/n+-6H-SiC heterojunction non-ultraviolet photodiode. Electron. Lett. 2012, 48, 1227–1228. [Google Scholar] [CrossRef]
- Zang, Y.; Li, L.B.; An, J.; Huang, L.; Jin, H.L. Si/SiC heterojunction prepared by metal induced crystallization of amorphous silicon. Mater. Lett. 2017, 188, 409–412. [Google Scholar] [CrossRef]
- Pérez-Tomás, A.; Jennings, M.R.; Davis, M.; Covington, J.A.; Mawby, P.A.; Shah, V.; Grasby, T. Characterization and Modeling of n-n Si/SiC Heterojunction Diodes. J. Appl. Phys. 2007, 102, 014505. [Google Scholar] [CrossRef]
- Pérez-Tomás, A.; Jennings, M.R.; Davis, M.; Shah, V.; Grasby, T.; Covington, J.A.; Mawby, P.A. High doped MBE Si p-n and n-n heterojunction diodes on 4H-SiC. Microelectron. J. 2007, 38, 1233–1237. [Google Scholar] [CrossRef]
- Guy, O.J.; Jenkins, T.E.; Lodzinski, M.; Castaing, A.; Wilks, S.P.; Bailey, P.; Noakes, T.C.Q. Ellipsometric and MEIS Studies of 4H-SiC/Si/SiO2 and 4H-SiC/SiO2 Interfaces for MOS Devices. Mater. Sci. Forum 2007, 556, 509–512. [Google Scholar] [CrossRef]
- Li, L.B.; Chen, Z.M.; Zang, Y.; Feng, S. Atomic-scale characterization of Si(110)/6H-SiC(0001) heterostructure by HRTEM. Mater. Lett. 2016, 163, 47–50. [Google Scholar] [CrossRef]
- Li, L.B.; Chen, Z.M.; Zang, Y. Epitaxial growth of Si/SiC heterostructures withdifferent preferred orientations on 6H-SiC(0001) by LPCVD. CrystEngComm 2016, 18, 5681–5685. [Google Scholar] [CrossRef]
- Kakalios, J.; Fritzsche, H. Persistent photoconductivity in doping-modulated amorphous semiconductors. Phys. Rev. Lett. 1984, 53, 1602. [Google Scholar] [CrossRef]
- Hundhausen, M.; Ley, L.; Carius, R. Carrier recombination times in amorphous-silicon doping superlattices. Phys. Rev. Lett. 1984, 53, 1598. [Google Scholar] [CrossRef]
- Yang, S.Y.; Seidel, J.; Byrnes, S.J.; Shafer, P.; Yang, C.-H.; Rossell, M.D.; Yu, P.; Chu, Y.-H.; Scott, J.W.; Ager, L.W.; et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Sandomirski, V.B.; Khalilov, S.S.; Chensky, E.V. The anomalous photovoltage in a model of the highly doped and compensated ferroelectric semiconductor. Ferroelectrics 1982, 43, 147–151. [Google Scholar] [CrossRef]
- Teraji, T.; Hara, S. Control of interface states at metal/6H-SiC(0001) interfaces. Phys. Rev. B 2004, 70, 035312. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zang, Y.; Hu, J.; Lin, S.; Chen, Z. Photoelectric Properties of Si Doping Superlattice Structure on 6H-SiC(0001). Materials 2017, 10, 583. https://doi.org/10.3390/ma10060583
Li L, Zang Y, Hu J, Lin S, Chen Z. Photoelectric Properties of Si Doping Superlattice Structure on 6H-SiC(0001). Materials. 2017; 10(6):583. https://doi.org/10.3390/ma10060583
Chicago/Turabian StyleLi, Lianbi, Yuan Zang, Jichao Hu, Shenghuang Lin, and Zhiming Chen. 2017. "Photoelectric Properties of Si Doping Superlattice Structure on 6H-SiC(0001)" Materials 10, no. 6: 583. https://doi.org/10.3390/ma10060583
APA StyleLi, L., Zang, Y., Hu, J., Lin, S., & Chen, Z. (2017). Photoelectric Properties of Si Doping Superlattice Structure on 6H-SiC(0001). Materials, 10(6), 583. https://doi.org/10.3390/ma10060583