Thermal Properties of Cement-Based Composites for Geothermal Energy Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CPCMs
2.3. Preparation and Mix Proportion of CPCMs Cement Paste Specimens
2.4. Test Methods Used for the Characterization of CPCMs
2.4.1. Thermal Properties of CPCMs
2.4.2. Environmental Scanning Electron Microscopy (ESEM)
2.4.3. Mechanical Properties of Thermal Energy Storage Cement Composites
2.4.4. Infrared Thermography of Thermal Energy Storage Cement Composites
2.4.5. Hydration Heat of Thermal Energy Storage Cement Composites
3. Results and Discussion
3.1. SEM of CPCMs
3.2. Thermal Properties of CPCMs
3.3. Mechanical Properties of Thermal Energy Storage Cement-Based Composites
3.4. Infrared Thermal Imaging Analysis
3.5. Hydration Heat of TESCP
4. Conclusions
- The compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa and hence can open an opportunity for structural purposes. Moreover, with increases in the percentage of CPCM in cement paste, the flexural strength and density of thermal energy storage cement paste composite decreased. The carbon-based CPCMs were well dispersed in the cement paste, depicting the uniform mixing of CPCM during mixing. This would help the geothermal energy in the piles to be stored evenly.
- From infrared thermal image analysis results, the thermal-regulating performance of cement paste with carbon-based PCM was found to be superior. Moreover, in comparison to EG-Parffin-20, the GNP-Paraffin-10 showed better thermal-regulatory performance due to a higher thermal conductivity coefficient of GNP. The temperature controlling capacity of PCM in CPCM gradually reduced when the temperature exceeded the melting point of PCM.
- The heat of the hydration results showed that carbon-based PCMs are not only more efficient in lowering the total hydration heat of cement paste but are also effective in lowering the hydration heat releasing rate. Therefore, thermal energy storage cement paste can be utilized in larger sections such as dams to reduce the undesirable tensile stresses resulting from the heat of the hydration of the cement paste.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PCM | phase change material |
CPCM | composite phase change material |
EG | expanded graphite |
GNP | graphene nanoplatelet |
EG-PCM | expanded graphite-based PCM |
GNP-PCM | graphene nanoplatelet-based PCM |
TES | thermal energy storage |
TESCP | thermal energy storage cement paste |
OCP | ordinary cement paste |
References
- Cui, H.; Liao, W.; Memon, S.; Dong, B.; Tang, W. Thermophysical and Mechanical Properties of Hardened Cement Paste with Microencapsulated Phase Change Materials for Energy Storage. Materials 2014, 7, 8070–8087. [Google Scholar] [CrossRef]
- Gruber, M.; Trüschel, A.; Dalenbäck, J.-O. Energy efficient climate control in office buildings without giving up implementability. App. Energy 2015, 154, 934–943. [Google Scholar] [CrossRef]
- Ionescu, C.; Baracu, T.; Vlad, G.-E.; Necula, H.; Badea, A. The historical evolution of the energy efficient buildings. Renew. Sustain. Energy Rev. 2015, 49, 243–253. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Gong, G.; Li, H.; Tang, G. Review of solar thermoelectric cooling technologies for use in zero energy buildings. Energy Build. 2015, 102, 207–216. [Google Scholar] [CrossRef]
- Tyagi, V.; Pandey, A.; Buddhi, D.; Kothari, R. Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings. Energy Build. 2016, 117, 44–52. [Google Scholar] [CrossRef]
- Virgone, J.; Giroux-Julien, S. Modeling of an Active Facade Containing Phase Change Materials. In Proceedings of the Conférence CLIMAMED, Juan-les-Pins, France, 10–11 September 2015. [Google Scholar]
- Agyenim, F. The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems. Renew. Energy 2016, 87, 229–239. [Google Scholar] [CrossRef]
- Zhang, D.; Tian, S.; Xiao, D. Experimental study on the phase change behavior of phase change material confined in pores. Sol. Energy 2007, 81, 653–660. [Google Scholar] [CrossRef]
- Memon, S.A. Phase change materials integrated in building walls: A state of the art review. Renew. Sustain. Energy Rev. 2014, 31, 870–906. [Google Scholar] [CrossRef]
- Memon, S.A.; Lo, T.Y.; Barbhuiya, S.A.; Xu, W. Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag. Energy Build. 2013, 62, 360–367. [Google Scholar] [CrossRef]
- Zalba, B.; Marı́n, J.M.A.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Bentz, D.P.; Turpin, R. Potential applications of phase change materials in concrete technology. Cem. Concr. Compos. 2007, 29, 527–532. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef]
- Geothermal Piles. Available online: http://www.esru.strath.ac.uk/EnvEng/Web_sites/11-12/GROUP2/MyWebSpace/piles.html (accessed on 27 January 2017).
- Gashti, E.H.N.; Uotinen, V.M.; Kujala, K. Numerical modelling of thermal regimes in steel energy pile foundations: A case study. Energy Build. 2014, 69, 165–174. [Google Scholar] [CrossRef]
- Donna, A.D.; Dupray, F.; Laloui, L. Numerical study of the heating-cooling effects on the geotechnical behaviour of energy piles. In Coupled Phenomena in Environmental Geotechnics; CRC Press: Boca Raton, FL, USA, 30 May 2013; pp. 475–482. [Google Scholar]
- Mimouni, T.; Laloui, L. Behaviour of a group of energy piles. Can. Geotech. J. 2015, 52, 1913–1929. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Nguyen, D.-D.; Shen, M.-Y.; Yip, M.-C.; Tai, N.-H. Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites. Compos. Part A Appl. Sci. Manuf. 2013, 44, 40–46. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, G.; Wang, S.; Fang, X.; Liu, X. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renew. Energy 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M. The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials. Cem. Concr. Compos. 2009, 31, 731–743. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl. Energy 2013, 105, 229–237. [Google Scholar] [CrossRef]
- Memon, S.A.; Lo, T.Y.; Shi, X.; Barbhuiya, S.; Cui, H. Preparation, characterization and thermal properties of Lauryl alcohol/Kaolin as novel form-stable composite phase change material for thermal energy storage in buildings. Appl. Therm. Eng. 2013, 59, 336–347. [Google Scholar] [CrossRef]
- Cui, H.; Tang, W.; Qin, Q.; Xing, F.; Liao, W.; Wen, H. Development of structural–functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball. Appl. Energy 2017, 185, 107–118. [Google Scholar] [CrossRef]
- Farnam, Y.; Krafcik, M.; Liston, L.; Washington, T.; Erk, K.; Tao, B.; Weiss, J. Evaluating the Use of Phase Change Materials in Concrete Pavement to Melt Ice and Snow. J. Mater. Civ. Eng. 2016, 28, 04015161. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, F.; Cui, H.-Z.; Chen, D.-Z.; Ouyang, X.; Xu, S.-Z.; Wang, J.-X.; Huang, Y.-T.; Zuo, J.-D.; Tang, J.-N. A novel phase-change cement composite for thermal energy storage: Fabrication, thermal and mechanical properties. Appl. Energy 2016, 170, 130–139. [Google Scholar] [CrossRef]
- Silakhori, M.; Fauzi, H.; Mahmoudian, M.R.; Metselaar, H.S.C.; Mahlia, T.M.I.; Khanlou, H.M. Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets. Energy Build. 2015, 99, 189–195. [Google Scholar] [CrossRef]
- Huang, X.; Guo, J.; Gong, Y.; Li, S.; Mu, S.; Zhang, S. In-situ preparation of a shape stable phase change material. Renew. Energy 2017, 108, 244–249. [Google Scholar] [CrossRef]
- Lin, L.I.; Dongxu, L.I.; Zhang, Y.; Zhang, S. Preparation and characteristics of ternary fatty acid/expanded perlite composite phase change materials. J. Nanjing Tech. Univ. 2016, 4, 20–26. [Google Scholar]
- Xu, B.; Ma, H.; Lu, Z.; Li, Z. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites. Appl. Energy 2015, 160, 358–367. [Google Scholar] [CrossRef]
- Fernandes, F.; Manari, S.; Aguayo, M.; Santos, K.; Oey, T.; Wei, Z.; Falzone, G.; Neithalath, N.; Sant, G. On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cem. Concr. Compos. 2014, 51, 14–26. [Google Scholar] [CrossRef]
- Meshgin, P.; Xi, Y. Effect of Phase-Change Materials on Properties of Concrete. ACI Mater. J. 2012, 109, 71–80. [Google Scholar]
- Meshgin, P.; Xi, Y.; Li, Y. Utilization of phase change materials and rubber particles to improve thermal and mechanical properties of mortar. Constr. Build. Mater. 2012, 28, 713–721. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, E.; Li, X.; Zhang, Y.; Qu, J.; Yu, Z.-Z. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 2016, 98, 50–57. [Google Scholar] [CrossRef]
- Cui, H.; Yang, S.; Memon, S. Development of Carbon Nanotube Modified Cement Paste with Microencapsulated Phase-Change Material for Structural–Functional Integrated Application. Int. J. Mol. Sci. 2015, 16, 8027–8039. [Google Scholar] [CrossRef] [PubMed]
- Šavija, B.; Schlangen, E. Use of phase change materials (PCMs) to mitigate early age thermal cracking in concrete: Theoretical considerations. Constr. Build. Mater. 2016, 126, 332–344. [Google Scholar] [CrossRef]
Oxides (wt %) | CaO | SiO2 | Al2O3 | Fe2O3 | K2O | MgO | TiO2 | Si/Ca |
---|---|---|---|---|---|---|---|---|
OPC | 64.6 | 20.9 | 6.10 | 3.10 | --- | 1.00 | --- | 0.327 |
Cement Paste Type | Cement | Water | CPCMs (EG-PCM or GNP-PCM) | Superplasticizer (wt %) |
---|---|---|---|---|
OCP (control) | 1 | 0.35 | 0 | 0.15 |
C-EG/PCM-10 | 1 | 0.35 | 0.1 | 0.3 |
C-EG/PCM-20 | 1 | 0.35 | 0.2 | 0.45 |
C-GNP/PCM-10 | 1 | 0.35 | 0.1 | 0.3 |
C-GNP/PCM-20 | 1 | 0.35 | 0.2 | 0.45 |
Cement Paste Type | 28-Day Compressive Strength | 28-Day Flexural Strength | Density | |||
---|---|---|---|---|---|---|
Value (MPa) | % Reduction | Value (MPa) | % Reduction | Value (kg/m3) | % Reduction | |
Control OCP | 66.1 | / | 7.9 | ------ | 2471 | ------ |
C-EG-PCM-10 | 14.6 | 77.9% | 2.1 | 73.4% | 1783.6 | 27.81 |
C-EG-PCM-20 | 9.0 | 86.4% | 1.3 | 83.5% | 1735.6 | 29.76 |
C-GNP-PCM-10 | 37.0 | 44% | 5.4 | 31.6% | 2297.6 | 7.02 |
C-GNP-PCM-20 | 25.6 | 61.3% | 4.6 | 41.8% | 2117 | 14.33 |
Sample No. | Δ(Taverage) | ||||
---|---|---|---|---|---|
0 min | 3 min | 6.05 min | 7.02 min | 14 min | |
C-EG/PCM-10 | −0.1 | −0.5 | −1.8 | −1.9 | −1.2 |
C-EG/PCM-20 | −0.1 | −1.3 | −2.6 | −2.8 | −1.4 |
C-GNP/PCM-10 | 0.0 | −0.5 | 0.0 | 0.1 | −0.3 |
C-GNP/PCM-20 | −0.2 | −1.6 | −1.9 | −2.0 | −1.8 |
Sample No. | Δ(Tspot) | ||||
0 min | 3 min | 6.05 min | 7.02 min | 14 min | |
C-EG/PCM-10 | 0.1 | −0.8 | −1.8 | −2.1 | −1.0 |
C-EG/PCM-20 | 1.0 | −1.4 | −2.5 | −2.9 | −1.6 |
C-GNP/PCM-10 | −1.4 | −0.7 | −0.1 | 0.0 | −0.1 |
C-GNP/PCM-20 | −1.1 | −1.6 | −1.8 | −2.1 | −1.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, X.; Memon, S.A.; Yang, H.; Dong, Z.; Cui, H. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications. Materials 2017, 10, 462. https://doi.org/10.3390/ma10050462
Bao X, Memon SA, Yang H, Dong Z, Cui H. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications. Materials. 2017; 10(5):462. https://doi.org/10.3390/ma10050462
Chicago/Turabian StyleBao, Xiaohua, Shazim Ali Memon, Haibin Yang, Zhijun Dong, and Hongzhi Cui. 2017. "Thermal Properties of Cement-Based Composites for Geothermal Energy Applications" Materials 10, no. 5: 462. https://doi.org/10.3390/ma10050462
APA StyleBao, X., Memon, S. A., Yang, H., Dong, Z., & Cui, H. (2017). Thermal Properties of Cement-Based Composites for Geothermal Energy Applications. Materials, 10(5), 462. https://doi.org/10.3390/ma10050462