Experimental Parametric Model for Indirect Adhesion Wear Measurement in the Dry Turning of UNS A97075 (Al-Zn) Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Charles, J.A.; Crane, F.A.; Furness, J.A. 15—Materials for airframes. In Selection and Use of Engineering Materials, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1997; pp. 227–255. [Google Scholar]
- Miracle, D.B. Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 2005, 65, 2526–2540. [Google Scholar] [CrossRef]
- Yi, X.-S. Development of multifunctional composites for aerospace application. In Multifunctionality of Polymer Composites; William Andrew Publishing: Oxford, UK, 2015; pp. 367–418. [Google Scholar]
- Zitoune, R.; Krishnaraj, V.; Sofiane Almabouacif, B.; Collombet, F.; Sima, M.; Jolin, A. Influence of machining parameters and new nano-coated tool on drilling performance of CFRP/aluminium sandwich. Compos. Part B Eng. 2012, 43, 1480–1488. [Google Scholar] [CrossRef]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Starke, E.A., Jr.; Staley, J.T. Application of modern aluminium alloys to aircraft. In Fundamentals of Aluminium Metallurgy; Woodhead Publishing: Cambridge, UK, 2011; pp. 747–783. [Google Scholar]
- Hinrichsen, J.; Bautista, C. The challenge of reducing both airframe weight and manufacturing cost. Air Space Eur. 2001, 3, 119–121. [Google Scholar] [CrossRef]
- Hosokawa, A.; Hirose, N.; Ueda, T.; Furumoto, T. High-quality machining of CFRP with high helix end mill. CIRP Ann. Manuf. Tech. 2014, 63, 89–92. [Google Scholar] [CrossRef]
- Zenia, S.; Ayed, L.B.; Nouari, M.; Delamézière, A. An elastoplastic constitutive damage model to simulate the chip formation process and workpiece subsurface defects when machining CFRP composites. Procedia CIRP 2015, 31, 100–105. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Pradhan, S.; Rout, A.K. Development and machinability assessment in turning Al/SiCp-metal matrix composite with multilayer coated carbide insert using taguchi and statistical techniques. Arch. Civ. Mech. Eng. 2013, 13, 27–35. [Google Scholar] [CrossRef]
- Knüwer, M. Metal materials in airbus A380. In Proceedings of the 2nd Izmir Global Aerospace & Offset Conference, Izmir, Turkey, 6–8 October 2010.
- Murray, G.; White, C.V.; Weise, W. Introduction to Engineering Materials; CRC Press-Taylor & Francis Group: London, UK, 2007. [Google Scholar]
- Polmear, I.J. Light Alloys; Butterworth-Heinemann: Oxford, UK, 2005; pp. 97–204. [Google Scholar]
- Trujillo, F.J.; Sevilla, L.; Marcos, M. Cutting speed-feed coupled experimental model for geometric deviations in the dry turning of UNS A97075 Al-Zn alloys. Adv. Mech. Eng. 2014, 6, 382435. [Google Scholar] [CrossRef]
- Campbell, F.C. Manufacturing Technology for Aerospace Structural Materials; Elsevier Science: Oxford, UK, 2006; pp. 15–92. [Google Scholar]
- Nouari, M.; List, G.; Girot, F.; Coupard, D. Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys. Wear 2003, 255, 1359–1368. [Google Scholar] [CrossRef]
- Astakhov, V.P. Surface integrity—Definition and importance in functional performance. In Surface Integrity in Machining; Davim, J.P., Ed.; Springer: London, UK, 2010; pp. 1–35. [Google Scholar]
- Jomaa, W.; Songmene, V.; Bocher, P. Surface finish and residual stresses induced by orthogonal dry machining of AA7075-T651. Materials 2014, 7, 1603–1624. [Google Scholar] [CrossRef]
- Apostolos, F.; Alexios, P.; Georgios, P.; Panagiotis, S.; George, C. Energy efficiency of manufacturing processes: A critical review. Procedia CIRP 2013, 7, 628–633. [Google Scholar] [CrossRef]
- Kelly, J.F.; Cotterell, M.G. Minimal lubrication machining of aluminium alloys. J. Mater. Process. Tech. 2002, 120, 327–334. [Google Scholar] [CrossRef]
- Qin, S.; Li, Z.; Guo, G.; An, Q.; Chen, M.; Ming, W. Analysis of minimum quantity lubrication (MQL) for different coating tools during turning of TC11 titanium alloy. Materials 2016, 9, 804. [Google Scholar] [CrossRef]
- Lu, C. Study on prediction of surface quality in machining process. J. Mater. Process. Tech. 2008, 205, 439–450. [Google Scholar] [CrossRef]
- List, G.; Nouari, M.; Géhin, D.; Gomez, S.; Manaud, J.P.; Le Petitcorps, Y.; Girot, F. Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 2005, 259, 1177–1189. [Google Scholar] [CrossRef]
- Liu, Z.; An, Q.; Xu, J.; Chen, M.; Han, S. Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear 2013, 305, 249–259. [Google Scholar] [CrossRef]
- Gökkaya, H. The effects of machining parameters on cutting forces, surface roughness, built-up edge (BUE) and built-up layer (BUL) during machining AA2014 (T4) alloy. J. Mech. Eng. 2010, 56, 584–593. [Google Scholar]
- Sánchez, J.M.; Rubio, E.; Álvarez, M.; Sebastián, M.A.; Marcos, M. Microstructural characterisation of material adhered over cutting tool in the dry machining of aerospace aluminium alloys. J. Mater. Process. Tech. 2005, 164–165, 911–918. [Google Scholar] [CrossRef]
- Carrilero, M.S.; Bienvenido, R.; Sánchez, J.M.; Álvarez, M.; González, A.; Marcos, M. A SEM and EDS insight into the BUL and BUE differences in the turning processes of AA2024 Al–Cu alloy. Int. J. Mach. Tools Manuf. 2002, 42, 215–220. [Google Scholar] [CrossRef]
- Sánchez-Sola, J.M.; Sebastián, M.A.; Carrilero, M.S.; González, J.M.; Marcos, M. Characterisation of the built-up edge and the built-up layer in the machining process of AA7050 alloy. Rev. Metal. 2005, 41, 365–368. [Google Scholar] [CrossRef]
- Sebastian, M.A.; Sanchez, J.M.; Rubio, E.; Carrilero, M.S.; Diaz, J.E.; Marcos, M. BUE and BUL formation mechanisms in dry cutting of AA7050 alloy. In Proceedings of the 14th International DAAAM Symposium, Sarajevo, Bosnia and Herzegovina, 22–25 October 2003; pp. 403–404.
- Batista, M.; Salguero, J.; Gómez, A.; Álvarez, M.; Marcos, M. Image based analysis evaluation of the elements of secondary adhesion wear in dry turning of aluminum alloys. Adv. Mater. Res. 2012, 498, 133–138. [Google Scholar] [CrossRef]
- Parra, A.; Álvarez, M.; Salguero, J.; Batista, M.; Marcos, M. Analysis of the evolution of the built-up edge and built-up layer formation mechanisms in the dry turning of aeronautical aluminium alloys. Wear 2013, 302, 1209–1218. [Google Scholar] [CrossRef]
- Trujillo, F.J.; Sevilla, L.; Marcos, M. Influence of the axial machining length on microgeometrical deviations of horizontally dry-turned UNS A97075 Al-Zn alloy. Proc. Eng. 2013, 63, 405–412. [Google Scholar] [CrossRef]
Zn | Mg | Cu | Cr | Si | Mn | Al |
---|---|---|---|---|---|---|
6.03 | 2.62 | 1.87 | 0.19 | 0.09 | 0.07 | Rest |
Flank angle (αp) | 7 |
Wedge angle (βp) | 66 |
Rake angle (γp) | 17 |
Tool cutting edge angle (κr) | 62.5 |
Insert included angle (ε) | 55 |
vc [m/min] | 40 | 80 | 170 | 200 |
f [mm/r] | 0.05 | 0.10 | 0.20 | 0.30 |
ap [mm] | 0.5 | 1 | 2 | - |
EDS Analysis | Composition | C | N | O | Mg | Al | Ti | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|
Alloy tested UNS A97075 | Mass [%] | - | - | - | 2.62 | 88.92 | - | 1.87 | 6.03 |
(Mass/Al) [%] | - | - | - | 2.94 | 100 | - | 2.10 | 6.78 | |
A1-EDS1 | Mass [%] | 18.31 | - | 4.01 | 0.62 | 58.09 | 17.99 | - | 0.98 |
(Mass/Al) [%] | - | - | - | 1.06 | 100 | - | - | 1.69 | |
A1-EDS2 | Mass [%] | 9.23 | - | 1.72 | 2.40 | 79.81 | - | 1.30 | 5.54 |
(Mass/Al) [%] | - | - | - | 3.00 | 100 | - | 1.62 | 6.94 | |
A1-EDS3 | Mass [%] | 5.12 | - | 1.61 | 2.51 | 83.61 | - | 1.49 | 5.66 |
(Mass/Al) [%] | - | - | 3.00 | 100 | - | 1.78 | 6.76 | ||
A1-EDS4 | Mass [%] | 1.35 | - | 0.95 | 2.61 | 87.49 | - | 1.51 | 6.09 |
(Mass/Al) [%] | - | - | - | 2.98 | 100 | - | 1.72 | 6.96 | |
A1-EDS5 | Mass [%] | - | 21.8 | - | - | 14.31 | 63.89 | - | - |
(Mass/Al) [%] | - | - | - | - | - | - | - | - |
EDS Analysis | Composition | C | N | O | Mg | Al | Ti | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|
Alloy tested UNS A97075 | Mass [%] | - | - | - | 2.62 | 88.92 | - | 1.87 | 6.03 |
(Mass/Al) [%] | - | - | - | 2.94 | 100 | - | 2.10 | 6.78 | |
A2-EDS1 | Mass [%] | 4.56 | 1.10 | 3.02 | 2.51 | 80.88 | - | 2.01 | 5.92 |
(Mass/Al) [%] | - | - | - | 3.10 | 100 | - | 2.48 | 7.30 | |
A2-EDS2 | Mass [%] | 11.80 | 22.80 | 1.11 | - | 2.91 | 61.38 | - | - |
(Mass/Al) [%] | - | - | - | - | - | - | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trujillo, F.J.; Sevilla, L.; Marcos, M. Experimental Parametric Model for Indirect Adhesion Wear Measurement in the Dry Turning of UNS A97075 (Al-Zn) Alloy. Materials 2017, 10, 152. https://doi.org/10.3390/ma10020152
Trujillo FJ, Sevilla L, Marcos M. Experimental Parametric Model for Indirect Adhesion Wear Measurement in the Dry Turning of UNS A97075 (Al-Zn) Alloy. Materials. 2017; 10(2):152. https://doi.org/10.3390/ma10020152
Chicago/Turabian StyleTrujillo, Francisco Javier, Lorenzo Sevilla, and Mariano Marcos. 2017. "Experimental Parametric Model for Indirect Adhesion Wear Measurement in the Dry Turning of UNS A97075 (Al-Zn) Alloy" Materials 10, no. 2: 152. https://doi.org/10.3390/ma10020152
APA StyleTrujillo, F. J., Sevilla, L., & Marcos, M. (2017). Experimental Parametric Model for Indirect Adhesion Wear Measurement in the Dry Turning of UNS A97075 (Al-Zn) Alloy. Materials, 10(2), 152. https://doi.org/10.3390/ma10020152