Next Article in Journal
Investigation of Flat Clinching Process Combined with Material Forming Technology for Aluminum Alloy
Next Article in Special Issue
Laser Machining and In Vitro Assessment of Wollastonite-Tricalcium Phosphate Eutectic Glasses and Glass-Ceramics
Previous Article in Journal
Two-Dimensional Fluorescence Difference Spectroscopy of ZnO and Mg Composites in the Detection of Physiological Protein and RNA Interactions
Previous Article in Special Issue
Laser-Induced Breakdown Spectroscopy (LIBS) for Monitoring the Formation of Hydroxyapatite Porous Layers
Open AccessReview

Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering

1
Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran
2
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 14155-6447, Iran
3
Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 Torino, Italy
*
Authors to whom correspondence should be addressed.
Materials 2017, 10(12), 1429; https://doi.org/10.3390/ma10121429
Received: 23 October 2017 / Revised: 11 December 2017 / Accepted: 12 December 2017 / Published: 15 December 2017
(This article belongs to the Special Issue Bioactive Glasses 2017)
Repair and regeneration of disorders affecting cardiac and pulmonary tissues through tissue-engineering-based approaches is currently of particular interest. On this matter, different families of bioactive glasses (BGs) have recently been given much consideration with respect to treating refractory diseases of these tissues, such as myocardial infarction. The inherent properties of BGs, including their ability to bond to hard and soft tissues, to stimulate angiogenesis, and to elicit antimicrobial effects, along with their excellent biocompatibility, support these newly proposed strategies. Moreover, BGs can also act as a bioactive reinforcing phase to finely tune the mechanical properties of polymer-based constructs used to repair the damaged cardiac and pulmonary tissues. In the present study, we evaluated the potential of different forms of BGs, alone or in combination with other materials (e.g., polymers), in regards to repair and regenerate injured tissues of cardiac and pulmonary systems. View Full-Text
Keywords: bioactive glasses; scaffold; angiogenesis; soft tissue engineering; cardiac regeneration; lung tissue engineering bioactive glasses; scaffold; angiogenesis; soft tissue engineering; cardiac regeneration; lung tissue engineering
Show Figures

Figure 1

MDPI and ACS Style

Kargozar, S.; Hamzehlou, S.; Baino, F. Potential of Bioactive Glasses for Cardiac and Pulmonary Tissue Engineering. Materials 2017, 10, 1429.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop