Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles
Abstract
:1. Introduction
2. Results
2.1. Dielectric Constant and Electrical Conductivity
2.2. Dipolar Forces between Particles
2.3. Electric Field-Assisted Formation of Granular Chains
3. Discussion and Conclusions
4. Materials and Methods
4.1. Sulfonation of PS Particles
4.2. Measurements of Dielectric Constant and Electric Conductivity
4.3. Measurement of Dipolar Forces
4.4. Experimental Setup for 1D Particle Assembly
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dutka, F.; Rozynek, Z.; Napiórkowski, M. Continuous and discontinuous transitions between two types of capillary bridges on a beaded chain pulled out from a liquid. Soft Matter 2017, 13, 4698–4708. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Qin, L.; Heath, J.R. The crossover from two dimensions to one dimension in granular electronic materials. Nat. Nanotechnol. 2009, 4, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, C.; Hubler, A. Stability and conductivity of self assembled wires in a transverse electric field. Sci. Rep. 2015, 5, 15044. [Google Scholar] [CrossRef] [PubMed]
- Quinten, M.; Leitner, A.; Krenn, J.R.; Aussenegg, F.R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 1998, 23, 1331–1333. [Google Scholar] [CrossRef] [PubMed]
- Solis, D., Jr.; Willingham, B.; Nauert, S.L.; Slaughter, L.S.; Olson, J.; Swanglap, P.; Paul, A.; Chang, W.-S.; Link, S. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes. Nano Lett. 2012, 12, 1349–1353. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yu, G.; Li, X.; Chang, F.; Zhong, C.-J. Palladium-gold alloy nanowire-structured interface for hydrogen sensing. Chempluschem 2015, 80, 722–730. [Google Scholar] [CrossRef]
- Karg, M.; König, T.A.F.; Retsch, M.; Stelling, C.; Reichstein, P.M.; Honold, T.; Thelakkat, M.; Fery, A. Colloidal self-assembly concepts for light management in photovoltaics. Mater. Today 2015, 18, 185–205. [Google Scholar] [CrossRef]
- Su, M.; Li, F.; Chen, S.; Huang, Z.; Qin, M.; Li, W.; Zhang, X.; Song, Y. Nanoparticle based curve arrays for multirecognition flexible electronics. Adv. Mater. 2016, 28, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.C.; Liu, W.-T.; Diao, J.-J. Colloidally deposited nanoparticle wires for biophysical detection. Chin. Phys. B 2015, 24, 127308. [Google Scholar] [CrossRef]
- Li, F.; Badel, X.; Linnros, J.; Wiley, J.B. Fabrication of colloidal crystals with tubular-like packings. J. Am. Chem. Soc. 2005, 127, 3268–3269. [Google Scholar] [CrossRef] [PubMed]
- Rozynek, Z.; Wang, B.; Fossum, J.O.; Knudsen, K.D. Dipolar structuring of organically modified fluorohectorite clay particles. Eur. Phys. J. E 2012, 35, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tan, J.; Li, H.; Gu, J.; Zhang, B.; Zhang, Q. Fast magnetic-field-induced formation of one-dimensional structured chain-like materials via sintering of Fe3O4/poly(styrene-co-n-butyl acrylate-co-acrylic acid) hybrid microspheres. RSC Adv. 2015, 5, 28735–28742. [Google Scholar] [CrossRef]
- Bharti, B.; Findenegg, G.H.; Velev, O.D. Co-assembly of oppositely charged particles into linear clusters and chains of controllable length. Sci. Rep. 2012, 2, 1004. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Chen, X.; Lu, N.; Chi, L. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Breidenich, J.L.; Wei, M.C.; Clatterbaugh, G.V.; Benkoski, J.J.; Keng, P.Y.; Pyun, J. Controlling length and areal density of artificial cilia through the dipolar assembly of ferromagnetic nanoparticles. Soft Matter 2012, 8, 5334–5341. [Google Scholar] [CrossRef]
- Vilfan, M.; Potocnik, A.; Kavcic, B.; Osterman, N.; Poberaj, I.; Vilfan, A.; Babic, D. Self-assembled artificial cilia. Proc. Natl. Acad. Sci. USA 2010, 107, 1844–1847. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.J.; Pyun, J. Colloidal polymers via dipolar assembly of magnetic nanoparticle monomers. ACS Appl. Mater. Interface 2014, 6, 6022–6032. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Mochizuki, Y.; Tamura, M.; Kawai, T. Fabrication and functionalization of periodically aligned metallic nanocup arrays using colloidal lithography with a sinusoidally wrinkled substrate. Langmuir 2013, 29, 15058–15064. [Google Scholar] [CrossRef] [PubMed]
- Hornyak, G.; Kroll, M.; Pugin, R.; Sawitowski, T.; Schmid, G.; Bovin, J.O.; Karsson, G.; Hofmeister, H.; Hopfe, S. Gold clusters and colloids in alumina nanotubes. Chem. Eur. J. 1997, 3, 1951–1956. [Google Scholar] [CrossRef]
- Huang, J.; Tao, A.R.; Connor, S.; He, R.; Yang, P. A general method for assembling single colloidal particle lines. Nano Lett. 2006, 6, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Favier, F.; Walter, E.C.; Zach, M.P.; Benter, T.; Penner, R.M. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 2001, 293, 2227–2231. [Google Scholar] [CrossRef] [PubMed]
- Bharti, B.; Velev, O.D. Multidirectional, multicomponent electric field driven assembly of complex colloidal chains. Z. Phys. Chem. 2015, 229, 1075–1088. [Google Scholar] [CrossRef]
- Vutukuri, H.R.; Demirors, A.F.; Peng, B.; van Oostrum, P.D.J.; Imhof, A.; van Blaaderen, A. Colloidal analogues of charged and uncharged polymer chains with tunable stiffness. Angew. Chem. 2012, 51, 11249–11253. [Google Scholar] [CrossRef] [PubMed]
- Gangwal, S.; Pawar, A.; Kretzschmar, I.; Velev, O.D. Programmed assembly of metallodielectric patchy particles in external ac electric fields. Soft Matter 2010, 6, 1413–1418. [Google Scholar] [CrossRef]
- Ding, H.; Liu, W.; Ding, Y.; Shao, J.; Zhang, L.; Liu, P.; Liu, H. Particle clustering during pearl chain formation in a conductive-island based dielectrophoretic assembly system. RSC Adv. 2015, 5, 5523–5532. [Google Scholar] [CrossRef]
- Fossum, J.O.; Meheust, Y.; Parmar, K.P.S.; Knudsen, K.D.; Maloy, K.J.; Fonseca, D.M. Intercalation-enhanced electric polarization and chain formation of nano-layered particles. EPL 2006, 74, 438–444. [Google Scholar] [CrossRef]
- Xie, Q.; Davies, G.B.; Harting, J. Controlled capillary assembly of magnetic Janus particles at fluid-fluid interfaces. Soft Matter 2016, 12, 6566–6574. [Google Scholar] [CrossRef] [PubMed]
- Kokot, G.; Piet, D.; Whitesides, G.M.; Aranson, I.S.; Snezhko, A. Emergence of reconfigurable wires and spinners via dynamic self-assembly. Sci. Rep. 2015, 5, 9528. [Google Scholar] [CrossRef] [PubMed]
- Rozynek, Z.; Han, M.; Dutka, F.; Garstecki, P.; Józefczak, A.; Luijten, E. Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis. Nat. Commun. 2017, 8, 15255. [Google Scholar] [CrossRef] [PubMed]
- Lascelles, S.F.; Armes, S.P. Synthesis and characterization of micrometre-sized, polypyrrole-coated polystyrene latexes. J. Mater. Chem. 1997, 7, 1339–1347. [Google Scholar] [CrossRef]
- Yan, J.; Wang, C.; Gao, Y.; Zheng, Z.; Zhong, S.; Miao, X.; Cui, X.; Wang, H. Anchoring conductive polyaniline on the surface of expandable polystyrene beads by swelling-based and in situ polymerization of aniline method. Chem. Eng. J. 2011, 172, 564–571. [Google Scholar] [CrossRef]
- Kim, Y.; Park, D. The electrorheological responses of suspensions of polypyrrole-coated polyethylene particles. Colloid Polym. Sci. 2002, 280, 828–834. [Google Scholar] [CrossRef]
- Han, M.G.; Sperry, J.; Gupta, A.; Huebner, C.F.; Ingram, S.T.; Foulger, S.H. Polyaniline coated poly(butyl methacrylate) core-shell particles: Roll-to-Roll printing of templated electrically conductive structures. J. Mater. Chem. 2007, 17, 1347–1352. [Google Scholar] [CrossRef]
- Brijmohan, S.B.; Shaw, M.T. Proton exchange membranes based on sulfonated crosslinked polystyrene micro particles dispersed in poly(dimethyl siloxane). Polymer 2006, 47, 2856–2864. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kwon, S.; Ihm, D. Reliability and thermodynamic studies of an anisotropic conductive adhesive film (ACAF) prepared from epoxy/rubber resins. J. Mater. Process. Technol. 2004, 152, 357–362. [Google Scholar] [CrossRef]
- Yuan, Y.; Lian, Y. Polystyrene microspheres coated with smooth polyaniline shells: Preparation and characterization. Tsinghua Sci. Technol. 2009, 14, 546–550. [Google Scholar] [CrossRef]
- Kubarkov, A.V.; Pyshkina, O.A.; Karpushkin, E.A.; Stevenson, K.J.; Sergeyev, V.G. Electrically conducting polymeric microspheres comprised of sulfonated polystyrene cores coated with poly(3,4-ethylenedioxythiophene). Colloid Polym. Sci. 2017, 295, 1049–1058. [Google Scholar] [CrossRef]
- Piao, S.H.; Gao, C.Y.; Choi, H.J. Sulfonated polystyrene nanoparticles coated with conducting polyaniline and their electro-responsive suspension characteristics under electric fields. Polymer 2017, 127, 174–181. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, C.; Tjiu, W.W.; Liu, T.X. Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. J. Mater. Res. 2013, 28, 611–619. [Google Scholar] [CrossRef]
- Pan, Y.F.; Wang, J.N.; Wang, Y.; Wang, Z.Q. PS microspheres coated by AuNPs via thermodynamic driving heterocoagulation and their high catalytic activity. Macromol. Rapid. Commun. 2014, 35, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Lee, Y.; Nam, J.-D. Tunable surface metal morphologies and electrical properties of monodispersed polystyrene beads coated with metal multilayers via electroless deposition. Intermetallics 2009, 17, 365–369. [Google Scholar] [CrossRef]
- Mikkelsen, A.; Wojciechowski, J.; Rajňák, M.; Kurimský, J.; Khobaib, K.; Kertmen, A.; Rozynek, Z. Electric field-driven assembly of sulfonated polystyrene microspheres. Materials 2017, 10, 329. [Google Scholar] [CrossRef] [PubMed]
- Asako, Y.; Ono, S.; Aizawa, R.; Kawakami, T. Properties of electrorheological fluids containing numerously sulfonated polymer particles. In Progress in Electrorheology: Science and Technology of Electrorheological Materials; Havelka, K.O.L., Filisko, F.E., Eds.; Springer US: Boston, MA, USA, 1995; Volume 8, pp. 147–156. [Google Scholar]
- Asako, Y.; Ono, S.; Aizawa, R.; Kawakami, T. Properties of electrorheological fluids containing sulfonated poly(styrene-co-divinylbenzene) particles. Int. J. Mod. Phys. B 1996, 10, 3159–3166. [Google Scholar] [CrossRef]
- Fan, X.; Niu, L.; Wu, Y.H.; Cheng, J.; Yang, Z.R. Assembly route toward raspberry-like composite particles and their controlled surface wettability through varied dual-size binary roughness. Appl. Surf. Sci. 2015, 332, 393–402. [Google Scholar] [CrossRef]
- Fan, X.; Niu, L.; Xia, Z. Preparation of raspberry-like silica microcapsules via sulfonated polystyrene template and aniline medium assembly method. Colloid Polym. Sci. 2014, 292, 3251–3259. [Google Scholar] [CrossRef]
- Davis, L.C. Polarization forces and conductivity effects in electrorheological fluids. J. Appl. Phys. 1992, 72, 1334–1340. [Google Scholar] [CrossRef]
- Jones, T.B. Electromechanics of Particles; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Saville, D.A. Electrohydrodynamics: The taylor-melcher leaky dielectric model. Annu. Rev. Fluid Mech. 1997, 29, 27–64. [Google Scholar] [CrossRef]
- Drews, A.M.; Cartier, C.A.; Bishop, K.J.M. Contact charge electrophoresis: Experiment and theory. Langmuir 2015, 31, 3808–3814. [Google Scholar] [CrossRef] [PubMed]
- Kucera, F.; Jancar, J. Preliminary study of sulfonation of polystyrene by homogeneous and heterogeneous reaction. Chem Pap 1996, 50, 224–227. [Google Scholar]
- Benavides, R.; Oenning, L.W.; Paula, M.M.S.; Da Silva, L. Properties of polystyrene/acrylic acid membranes after sulphonation reactions. J. New Mat. Electrochem. Syst. 2014, 17, 85–90. [Google Scholar]
- Wallace, R.A. Electrical-conduction in sulfonated polystyrene films. J. Appl. Polym. Sci. 1973, 17, 231–238. [Google Scholar] [CrossRef]
- Ikazaki, F.; Kawai, A.; Kawakami, T.; Konishi, M.; Asako, Y. Electrorheology of suspension of sulfonated styrene-co-divinylbenzene particles - approach based on the dielectric properties of the suspension. Int. J. Mod. Phys. B 1999, 13, 1845–1851. [Google Scholar] [CrossRef]
- Dreyfus, R.; Baudry, J.; Roper, M.L.; Fermigier, M.; Stone, H.A.; Bibette, J. Microscopic artificial swimmers. Nature 2005, 437, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Anzel, P.; Yang, J.; Kevrekidis, P.G.; Daraio, C. Granular acoustic switches and logic elements. Nat. Commun. 2014, 5, 5311. [Google Scholar] [CrossRef] [PubMed]
- Li, D.C.; Banon, S.; Biswal, S.L. Bending dynamics of DNA-linked colloidal particle chains. Soft Matter 2010, 6, 4197–4204. [Google Scholar] [CrossRef]
- Sun, Y.C.; Fei, H.T.; Huang, P.C.; Juan, W.T.; Huang, J.R.; Tsai, J.C. Short granular chain under vibration: Spontaneous switching of states. Phys. Rev. E 2016, 93, 032902. [Google Scholar] [CrossRef] [PubMed]
- Dommersnes, P.; Rozynek, Z.; Mikkelsen, A.; Castberg, R.; Kjerstad, K.; Hersvik, K.; Otto Fossum, J. Active structuring of colloidal armour on liquid drops. Nat. Commun. 2013, 4, 2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelrod, N.; Axelrod, E.; Gutina, A.; Puzenko, A.; Ben Ishai, P.; Feldman, Y. Dielectric spectroscopy data treatment: I. Frequency domain. Meas. Sci. Technol. 2004, 15, 755–764. [Google Scholar] [CrossRef]
- Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Rozynek, Z.; Dommersnes, P.; Mikkelsen, A.; Michels, L.; Fossum, J.O. Electrohydrodynamic controlled assembly and fracturing of thin colloidal particle films confined at drop interfaces. Eur. Phys. J.-Spec. Top. 2014, 223, 1859–1867. [Google Scholar] [CrossRef]
Sulfonation Time (min) | 0 | 1 | 2 | 4 | 8 | 16 | 32 |
---|---|---|---|---|---|---|---|
Dielectric constant, | 2.2 | 2.7 | 2.9 | 3.2 | 6.3 | 7.4 | 7.9 |
Electrical conductivity, σ (nS/m) | 0.5 | 4.5 | 8.1 | 43 | 81 | 81 | 83 |
Dielectric strength () | 0.7 | 0.8 | 0.9 | 1.1 | 4.1 | 4.3 | 4.5 |
Sulfonation Time (min) | 1 | 2 | 4 | 8 | 16 | 32 |
---|---|---|---|---|---|---|
Estimated | 0.01 | 0.23 | 0.37 | 0.38 | 0.41 | 0.36 |
Estimated | 3.5 | 5.3 | 7.6 | 7.9 | 8.5 | 7.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikkelsen, A.; Kertmen, A.; Khobaib, K.; Rajňák, M.; Kurimský, J.; Rozynek, Z. Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles. Materials 2017, 10, 1212. https://doi.org/10.3390/ma10101212
Mikkelsen A, Kertmen A, Khobaib K, Rajňák M, Kurimský J, Rozynek Z. Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles. Materials. 2017; 10(10):1212. https://doi.org/10.3390/ma10101212
Chicago/Turabian StyleMikkelsen, Alexander, Ahmet Kertmen, Khobaib Khobaib, Michal Rajňák, Juraj Kurimský, and Zbigniew Rozynek. 2017. "Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles" Materials 10, no. 10: 1212. https://doi.org/10.3390/ma10101212
APA StyleMikkelsen, A., Kertmen, A., Khobaib, K., Rajňák, M., Kurimský, J., & Rozynek, Z. (2017). Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles. Materials, 10(10), 1212. https://doi.org/10.3390/ma10101212