Two New Sandwich-Type Polyoxomolybdates Functionalized with Diphosphonates: Efficient and Selective Oxidation of Sulfides to Sulfones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Description
2.2. Catalytic Activity
2.2.1. The Exploration of Optimal Conditions
2.2.2. Control Experiment and Scope in Various Sulfides
2.2.3. Recycling Experiment
2.3. TGA
2.4. UV Spectra
2.5. Solution 31P NMR Studies
3. Materials and Methods
3.1. Materials
Synthesis of Catalysts
3.2. Characterization
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fernández, I.; Khiar, N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev. 2003, 103, 3651–3706. [Google Scholar] [CrossRef] [PubMed]
- Caron, S.; Dugger, R.W.; Ruggeri, S.G.; Ragan, J.A.; Ripin, D.H.B. Large-scale oxidations in the pharmaceutical industry. Chem. Rev. 2006, 106, 2943–2989. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Cao, P.; Xing, J.; Lou, Y.; Jiang, L.; Li, L.; Liao, J. Hydrogen-bond-promoted palladium catalysis: allylic alkylation of indoles with unsymmetrical 1, 3-disubstituted allyl acetates using chiral bis(sulfoxide) phosphine ligands. Angew. Chem. Int. Ed. 2013, 52, 4207–4211. [Google Scholar] [CrossRef] [PubMed]
- Doherty, S.; Knight, J.G.; Carroll, M.A.; Clemmet, A.R.; Ellison, J.R.; Backhouse, T.; Holmes, N.; Thompson, L.A.; Bourne, R.A. Efficient and selective oxidation of sulfides in batch and continuous flow using styrene-based polymer immobilised ionic liquid phase supported peroxotungstates. RSC Adv. 2016, 6, 73118–73131. [Google Scholar] [CrossRef]
- Jin, S.S.; Wang, H.; Xu, M.H. Design of N-sulfinyl homoallylic amines as novel sulfinamide-olefin hybrid ligands for asymmetric catalysis: Application in Rh-catalyzed enantioselective 1, 4-additions. Chem. Commun. 2011, 47, 7230–7232. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.Y.; Zhu, T.S.; Xu, M.H. Design of chiral sulfoxide–olefins as a new class of sulfur-based olefin ligands for asymmetric catalysis. Org. Lett. 2011, 13, 3410–3413. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, J.; Lang, F.; Zhang, X.; Cun, L.; Zhu, J.; Deng, J.; Liao, J. A C2-symmetric chiral bis-sulfoxide ligand in a rhodium-catalyzed reaction: Asymmetric 1, 4-addition of sodium tetraarylborates to chromenones. J. Am. Chem. Soc. 2010, 132, 4552–4553. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, S.; Chen, W.; Wang, M.; Song, Y.F. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36·32H2O in [bmim]BF4 at room temperature. Chem. Eur. J. 2012, 18, 4775–4781. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, G.; Zhang, B.; Zhang, X. Oxidation of refractory sulfur compounds with molecular oxygen over a Ce–Mo–O catalyst. Green Chem. 2016, 18, 5273–5279. [Google Scholar] [CrossRef]
- Varma, R.S.; Naicker, K.P. The urea–hydrogen peroxide complex: Solid-state oxidative protocols for hydroxylated aldehydes and ketones (Dakin reaction), nitriles, sulfides, and nitrogen heterocycles. Org. Lett. 1999, 1, 189–192. [Google Scholar] [CrossRef]
- Fukuda, N.; Ikemoto, T. Imide-catalyzed oxidation system: Sulfides to sulfoxides and sulfones. J. Org. Chem. 2010, 75, 4629–4631. [Google Scholar] [CrossRef] [PubMed]
- Varma, R.S.; Saini, R.K.; Meshram, H.M. Selective oxidation of sulfides to sulfoxides and sulfones by microwave thermolysis on wet silica-supported sodium periodate. Tetrahedron Lett. 1997, 38, 6525–6528. [Google Scholar] [CrossRef]
- Yu, B.; Liu, A.H.; He, L.N.; Li, B.; Diao, Z.F.; Li, Y.N. Catalyst-free approach for solvent-dependent selective oxidation of organic sulfides with oxone. Green Chem. 2012, 14, 957–962. [Google Scholar] [CrossRef]
- Van de Velde, F.; Arends, I.W.C.; Sheldon, R.A. Biocatalytic and biomimetic oxidations with vanadium. J. Inorg. Biochem. 2000, 80, 81–89. [Google Scholar] [CrossRef]
- Legros, J.; Bolm, C. Highly enantioselective iron-catalyzed sulfide oxidation with aqueous hydrogen peroxide under simple reaction conditions. Angew. Chem. Int. Ed. 2004, 43, 4225–4228. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, A.H.; He, L.N.; Yang, Z.Z.; Gao, J.; Chen, K.H. Iron-catalyzed selective oxidation of sulfides to sulfoxides with the polyethylene glycol/O2 system. Green Chem. 2012, 14, 130–135. [Google Scholar] [CrossRef]
- Al-Maksoud, W.; Daniele, S.; Sorokin, A.B. Practical oxidation of sulfides to sulfones by H2O2 catalysed by titanium catalyst. Green Chem. 2008, 10, 447–451. [Google Scholar] [CrossRef]
- Davies, P.W.; Albrecht, S.J.C. Gold- or platinum-catalyzed synthesis of sulfur heterocycles: Access to sulfur ylides without using sacrificial functionality. Angew. Chem. Int. Ed. 2009, 48, 8372–8375. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yang, C.; Cheng, Z.; Zhang, Z. A reusable catalytic system for sulfide oxidation and epoxidation of allylic alcohols in water catalyzed by poly(dimethyl diallyl) ammonium/polyoxometalate. Green Chem. 2016, 18, 995–998. [Google Scholar] [CrossRef]
- Doherty, S.; Knight, J.G.; Carroll, M.A.; Ellison, J.R.; Hobson, S.J.; Stevens, S.; Hardacre, C.; Goodrich, P. Efficient and selective hydrogen peroxide-mediated oxidation of sulfides in batch and segmented and continuous flow using a peroxometalate-based polymer immobilised ionic liquid phase catalyst. Green Chem. 2015, 17, 1559–1571. [Google Scholar] [CrossRef] [Green Version]
- Dolbecq, A.; Mialane, P.; Sécheresse, F.; Keita, B.; Nadjo, L. Functionalized polyoxometalates with covalently linked bisphosphonate, N-donor or carboxylate ligands: From electrocatalytic to optical properties. Chem. Commun. 2012, 48, 8299–8316. [Google Scholar] [CrossRef] [PubMed]
- El Moll, H.; Zhu, W.; Oldfield, E.; Rodriguez-Albelo, L.M.; Mialane, P.; Marrot, J.; Vila, N.; Mbomekallé, I.M.; Rivière, E.; Duboc, C.; et al. Polyoxometalates functionalized by bisphosphonate ligands: Synthesis, structural, magnetic, and spectroscopic characterizations and activity on tumor cell lines. Inorg. Chem. 2012, 51, 7921–7931. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Wan, R.; Si, Y.; Hu, F.; Wang, Y.; Niu, J.; Wang, J. Double-malate bridging tri-lanthanoid cluster encapsulated arsenotungstates: Syntheses, structures, luminescence and magnetic properties. Dalton Trans. 2015, 44, 11514–11523. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liang, Y.; Ma, P.; Li, S.; Wang, J.; Niu, J. Ligand-directed conformation of inorganic–organic molecular capsule and cage. Inorg. Chem. 2014, 53, 3048–3053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, J.; Wang, P.; Ding, B.; Huang, Y.; Zhao, Z.; Zhang, J.; Wei, Y. Step-by-step strategy from achiral precursors to polyoxometalates-based chiral organic–inorganic hybrids. Inorg. Chem. 2015, 54, 2551–2559. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Yamase, T. Controllable layered structures in polyoxomolybdate-surfactant hybrid crystals. Materials 2010, 3, 158–164. [Google Scholar] [CrossRef]
- Kato, C.N.; Hara, K.; Kato, M.; Amano, H.; Sato, K.; Kataoka, Y.; Mori, W. EDTA-reduction of water to molecular hydrogen catalyzed by visible-light-response TiO2-based materials sensitized by Dawson- and Keggin-type rhenium(V)-containing polyoxotungstates. Materials 2010, 3, 897–917. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, M.; Chen, X.; Yue, B.; He, H. Heterogeneous catalysis of polyoxometalate based organic–inorganic hybrids. Materials 2015, 8, 1545–1567. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Yang, G.Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, S.S.; Zhao, J.W.; Cheng, L.; Yang, G.Y. Synergistic combination of Multi-ZrIV cations and lacunary keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate. J. Am. Chem. Soc. 2014, 136, 7637–7642. [Google Scholar] [CrossRef] [PubMed]
- Kamata, K.; Hirano, T.; Mizuno, N. Highly efficient oxidation of sulfides with hydrogen peroxide catalyzed by [SeO4{WO(O2)2}2]2−. Chem. Commun. 2009, 26, 3958–3960. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.J.; Zhang, Y.; Ren, T. Polyoxometalate [γ-SiW10O34(H2O)2]4− on MCM-41 as catalysts for sulfide oxygenation with hydrogen peroxide. J. Mol. Catal. Chem. 2014, 392, 188–193. [Google Scholar] [CrossRef]
- Ye, J.X.; Wang, J.Y.; Wang, X.; Zhou, M.D. Alkylimidazolium/alkylpyridinium octamolybdates catalyzed oxidation of sulfides to sulfoxides/sulfones with hydrogen peroxide. Catal. Commun. 2016, 81, 1–3. [Google Scholar] [CrossRef]
- Banerjee, A.; Raad, F.S.; Vankova, N.; Bassil, B.S.; Heine, T.; Kortz, U. Polyoxomolybdodiphosphonates: Examples incorporating ethylidenepyridines. Inorg. Chem. 2011, 50, 11667–11675. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Bassil, B.S.; Röschenthaler, G.V.; Kortz, U. Diphosphates and diphosphonates in polyoxometalate chemistry. Chem. Soc. Rev. 2012, 41, 7590–7604. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ban, R.; Ma, P.; Wang, J.; Zhang, D.; Niu, J.; Wang, J. Four transition-metal-bridging risedronate-based polyoxomolybdates: Syntheses, structures, characterizations and magnetic properties. Synth. Met. 2017, 223, 19–25. [Google Scholar] [CrossRef]
- Li, J.; Guo, J.; Jia, J.; Ma, P.; Zhang, D.; Wang, J.; Niu, J. Isopentatungstate-supported metal carbonyl derivative: Synthesis, characterization, and catalytic properties for alkene epoxidation. Dalton Trans. 2016, 45, 6726–6731. [Google Scholar] [CrossRef] [PubMed]
- Rocchiccioli-Deltcheff, C.; Fournier, M.; Franck, R.; Thouvenot, R. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg. Chem. 1983, 22, 207–216. [Google Scholar] [CrossRef]
Compounds | 1 | 2 |
---|---|---|
Formula | C4H58Mo4Na8NiO52P4 | C4H54CoMo4Na8O50P4 |
Formula weight/(g mol−1) | 1688.77 | 1652.96 |
T (K) | 293(2) | 296(2) |
Crystal system | triclinic | monoclinic |
Space group | P-1 | C2/c |
a/Å | 9.2505(9) | 23.5940(16) |
b/Å | 10.8049(11) | 9.8626(6) |
c/Å | 14.3226(13) | 21.1105(14) |
α/° | 84.259(2) | 90 |
β/° | 84.085(2) | 90.8400(10) |
γ/° | 65.2980(10) | 90 |
Volume/(Å3) | 1291.1(2) | 4911.8(6) |
Z | 1 | 4 |
Dcalcd (g cm−3) | 2.172 | 2.235 |
μ/(mm−1) | 1.620 | 1.652 |
F(000) | 842.0 | 3284.0 |
Crystal size/(mm3) | 0.5 × 0.22 × 0.2 | 0.55 × 0.55 × 0.45 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range for data collection/° | 4.924 to 50.2 | 3.86 to 50.198 |
Limiting indices | −10 ≤ h ≤ 11, −10 ≤ k ≤ 12, −17 ≤ l ≤ 15 | −28 ≤ h ≤ 26, −11 ≤ k ≤ 11, −25 ≤ l ≤ 19 |
No. of reflections collected | 6591 | 11983 |
No. of independent reflections | 4519 {Rint = 0.0171, Rsigma = 0.0315} | 4356 {Rint = 0.0163, Rsigma = 0.0196} |
No. of parameters | 337 | 322 |
GOF on F2 | 1.091 | 1.080 |
R1, wR2 [I > 2σ(I)] | 0.0276, 0.0725 | 0.0291, 0.0776 |
R1, wR2 [all data] | 0.0310, 0.0745 | 0.0310, 0.0786 |
| ||||||
Entry | Amount of Catalyst (mol %) a | Temp. (°C) | H2O2 (mmol) | Conv. (%) | Selectivity (%) Sulfoxide/Sulfone | |
1 | None | 50 | 1.25 | 37 | 16 | 84 |
2 | 1 | 50 | 1.25 | 90 | 20 | 80 |
3 | 2 | 50 | 1.25 | 96 | 11 | 89 |
4 | 3 | 50 | 1.25 | 98 | 6 | 94 |
5 | 3 | 25 | 1.25 | 63 | 22 | 78 |
6 | 3 | 40 | 1.25 | 92 | 19 | 81 |
7 | 3 | 50 | 1 | 96 | 27 | 73 |
8 | 3 | 50 | 0.5 | 47 | 79 | 21 |
9 | 3 | 50 | 0.25 | 24 | 88 | 12 |
Entry | Substrate | Temp./°C | Time/h | Conv./% | Selectivity (%) | |
---|---|---|---|---|---|---|
Sulfoxide/Sulfone | ||||||
1 a | | 50 | 0.5 | 100 | 0 | 100 |
2 | | 50 | 1 | 100 | 0 | 100 |
3 | | 50 | 1 | 100 | 3 | 97 |
4 | | 50 | 1 | 99 | 6 | 94 |
5 | | 50 | 1 | 97 | 6 | 94 |
6 | | 50 | 1 | 100 | 0 | 100 |
7 b | | 60 | 1 | 98 | 7 | 93 |
8 | | 60 | 3 | 99 | 0.8 | 99 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Sun, X.; Hu, F.; Wan, R.; Singh, V.; Ma, P.; Niu, J.; Wang, J. Two New Sandwich-Type Polyoxomolybdates Functionalized with Diphosphonates: Efficient and Selective Oxidation of Sulfides to Sulfones. Materials 2017, 10, 1173. https://doi.org/10.3390/ma10101173
Xu Q, Sun X, Hu F, Wan R, Singh V, Ma P, Niu J, Wang J. Two New Sandwich-Type Polyoxomolybdates Functionalized with Diphosphonates: Efficient and Selective Oxidation of Sulfides to Sulfones. Materials. 2017; 10(10):1173. https://doi.org/10.3390/ma10101173
Chicago/Turabian StyleXu, Qiaofei, Xiaopeng Sun, Feng Hu, Rong Wan, Vikram Singh, Pengtao Ma, Jingyang Niu, and Jingping Wang. 2017. "Two New Sandwich-Type Polyoxomolybdates Functionalized with Diphosphonates: Efficient and Selective Oxidation of Sulfides to Sulfones" Materials 10, no. 10: 1173. https://doi.org/10.3390/ma10101173
APA StyleXu, Q., Sun, X., Hu, F., Wan, R., Singh, V., Ma, P., Niu, J., & Wang, J. (2017). Two New Sandwich-Type Polyoxomolybdates Functionalized with Diphosphonates: Efficient and Selective Oxidation of Sulfides to Sulfones. Materials, 10(10), 1173. https://doi.org/10.3390/ma10101173