Analysis of Photovoltaic Self-Consumption Systems
Abstract
:1. Introduction
2. Self-Consumption Methods
2.1. Off-Grid PV + Diesel System
2.2. Off-Grid PV + Diesel + Batteries System
2.3. Grid-Connected PV-Only System under Net-Metering Policy
3. Energy and Economic Data
3.1. Meteorological Data Sources
3.2. PV Panels
3.3. Mounting Structures
3.4. Inverters
3.5. Energy Balance
4. Study Cases
4.1. Off-Grid PV + Diesel System
4.1.1. Cost and CO2 Emissions of the PV + Diesel System
4.1.2. Analysis and Simulation
4.1.3. Financial Evaluation
4.1.4. Sensitivity Analysis
4.2. Off-Grid PV + Diesel + Batteries System
4.2.1. Cost and Emissions of the System (PV + Diesel + Batteries)
4.2.2. Analysis and Simulation
4.2.3. Sensitivity Analysis
4.3. Grid-Connected PV-Only System under Net-Metering Policy
4.3.1. Analysis and Simulation
4.3.2. Sensitivity Analysis
5. Comparison of the Optimal Results of the Base Cases
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Badcock, J.; Lenzen, M. Subsidies for electricity-generating technologies: A review. Energy Policy 2010, 38, 5038–5047. [Google Scholar] [CrossRef]
- Sarasa-Maestro, C.J.; Dufo-López, R.; Bernal-Agustín, J.L. Photovoltaic remuneration policies in the European Union. Energy Policy 2013, 55, 317–328. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Rosa, P. Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets. Energies 2015, 8, 12865–12880. [Google Scholar] [CrossRef]
- Bürer, M.J.; Wüstenhagen, R. Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energy Policy 2009, 37, 4997–5006. [Google Scholar] [CrossRef]
- Botero, S.; Morales, C. Análisis Del Instrumento Regulatorio "Medición Neta" (Net Metering) Y Su Potencial Aplicación Al Caso Colombiano. Rev. Energy 2008, 40, 53–66. [Google Scholar]
- Darghouth, N.R.; Barbose, G.; Wiser, R. The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California. Energy Policy 2011, 39, 5243–5253. [Google Scholar] [CrossRef]
- Royal Decree 661//2007, dated 25th of May by Which the Activity of Production of Electric Energy in a Special Regime is Regulated, Spain. Available online: http://www.boe.es/boe/dias/2007/05/26/ (accessed on 3 May 2016).
- Dufo-López, R.; Bernal-Agustín, J.L. A comparative assessment of net metering and net billing policies. Study cases for Spain. Energy 2015, 84, 684–694. [Google Scholar] [CrossRef]
- Talavera, D.L.; de La Casa, J.; Muñoz-Cerón, E.; Almonacid, G. Grid parity and self-consumption with photovoltaic systems under the present regulatory framework in Spain: The case of the University of Jaén Campus. Renew. Sustain. Energy Rev. 2014, 33, 752–771. [Google Scholar] [CrossRef]
- Linssen, J.; Stenzel, P.; Fleer, J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Appl. Energy 2016. [Google Scholar] [CrossRef]
- Beck, T.; Kondziella, H.; Huard, G.; Bruckner, T. Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems. Appl. Energy 2016, 173, 331–342. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic self-consumption in buildings: A review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef]
- Mulder, G.; Six, D.; Claessens, B.; Broes, T.; Omar, N.; van Mierlo, J. The dimensioning of PV-battery systems depending on the incentive and selling price conditions. Appl. Energy 2013, 111, 1126–1135. [Google Scholar] [CrossRef]
- Ren, Z.; Grozev, G.; Higgins, A. Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures. Renew. Energy 2016, 89, 317–330. [Google Scholar] [CrossRef]
- Castillo-Cagigal, M.; Caamaño-Martín, E.; Matallanas, E.; Masa-Bote, D.; Gutiérrez, A.; Monasterio-Huelin, F.; Jiménez-Leube, J. PV self-consumption optimization with storage and Active DSM for the residential sector. Sol. Energy 2011, 85, 2338–2348. [Google Scholar] [CrossRef] [Green Version]
- Widén, J. Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings. Appl. Energy 2014, 126, 199–212. [Google Scholar] [CrossRef]
- McKenna, E.; McManus, M.; Cooper, S.; Thomson, M. Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems. Appl. Energy 2013, 104, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Merei, G.; Moshövel, J.; Magnor, D.; Sauer, D.U. Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications. Appl. Energy 2016, 168, 171–178. [Google Scholar] [CrossRef]
- Kästel, P.; Gilroy-Scott, B. Economics of pooling small local electricity prosumers—LCOE & self-consumption. Renew. Sustain. Energy Rev. 2015, 51, 718–729. [Google Scholar]
- Chiaroni, D.; Chiesa, V.; Colasanti, L.; Cucchiella, F.; D’Adamo, I.; Frattini, F. Evaluating solar energy profitability: A focus on the role of self-consumption. Energy Convers. Manag. 2014, 88, 317–331. [Google Scholar] [CrossRef]
- Nicholls, A.; Sharma, R.; Saha, T.K. Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia. Appl. Energy 2015, 159, 252–264. [Google Scholar] [CrossRef]
- Lang, T.; Ammann, D.; Girod, B. Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings. Renew. Energy 2016, 87, 77–87. [Google Scholar] [CrossRef]
- Parra, D.; Patel, M.K. Effect of tariffs on the performance and economic benefits of PV-coupled battery systems. Appl. Energy 2016, 164, 175–187. [Google Scholar] [CrossRef]
- Jargstorf, J.; De Jonghe, C.; Belmans, R. Assessing the reflectivity of residential grid tariffs for a user reaction through photovoltaics and battery storage. Sustain. Energy Grids Netw. 2015, 1, 85–98. [Google Scholar] [CrossRef]
- Dufo-López, R.; Cristóbal-Monreal, I.R.; Yusta, J.M. Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renew. Energy 2016, 94, 280–293. [Google Scholar] [CrossRef]
- Dufo-López, R. iHOGA (Improved Hybrid Optimization by Genetic Algorithms). Available online: http://personal.unizar.es/rdufo/ (accessed on 26 February 2016).
- Dufo-López, R.; Bernal-Agustín, J.L. Techno-economic analysis of grid-connected battery storage. Energy Convers. Manag. 2015, 91, 394–404. [Google Scholar] [CrossRef]
- Dufo-López, R. Optimisation of size and control of grid-connected storage under real time electricity pricing conditions. Appl. Energy 2015, 140, 395–408. [Google Scholar] [CrossRef]
- Darghouth, N.R.; Wiser, R.H.; Barbose, G.; Mills, A.D. Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment. Appl. Energy 2016, 162, 713–722. [Google Scholar] [CrossRef]
- Darghouth, N.R.; Wiser, R.H.; Barbose, G. Customer economics of residential photovoltaic systems: Sensitivities to changes in wholesale market design and rate structures. Renew. Sustain. Energy Rev. 2016, 54, 1459–1469. [Google Scholar] [CrossRef]
- Christoforidis, G.C.; Panapakidis, I.P.; Papadopoulos, T.A.; Papagiannis, G.K.; Koumparou, I.; Hadjipanayi, M.; Georghiou, G.E. A model for the assessment of different Net-Metering policies. Energies 2016, 9, 262. [Google Scholar] [CrossRef]
- Branker, K.; Pathak, M.J.M.; Pearce, J.M. A review of solar photovoltaic levelized cost of electricity. Renew. Sustain. Energy Rev. 2011, 15, 4470–4482. [Google Scholar] [CrossRef]
- Schiffer, J.; Sauer, D.U.; Bindner, H.; Cronin, T.; Lundsager, P.; Kaiser, R. Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems. J. Power Sources 2007, 168, 66–78. [Google Scholar] [CrossRef]
- Dufo-López, R.; Lujano-Rojas, J.M.; Bernal-Agustín, J.L. Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems. Appl. Energy 2014, 115, 242–253. [Google Scholar] [CrossRef]
- Matteson, S.; Williams, E. Residual learning rates in lead-acid batteries: Effects on emerging technologies. Energy Policy 2015, 85, 71–79. [Google Scholar] [CrossRef]
- Hoppmann, J.; Volland, J.; Schmidt, T.S.; Hoffmann, V.H. The economic viability of battery storage for residential solar photovoltaic systems—A review and a simulation model. Renew. Sustain. Energy Rev. 2014, 39, 1101–1118. [Google Scholar] [CrossRef]
- García-Triniño, P.; Llorens-Iborra, F.; García-Pichardo, E.; García-Vázquez, C.A.; Fernández-Ramírez, L.M. Economic viability of small power photovoltaic facilities for dwellings by using the net-metering mode. DYNA 2014, 89, 229–235. [Google Scholar]
- PVGIS, Photovoltaic Geographical Information System. Available online: http://re.jrc.ec.europa.eu/pvgis/ (accessed on 18 May 2016).
- STA, Solar Trade Association UK. Available online: http://www.solar-trade.org.uk/ (accessed on 19 May 2016).
- Commission Regulation (EU) No 182/2013 of 1 March 2013 Making Imports of Crystalline Silicon Photovoltaic Modules and Key Components (i.e. Cells and Wafers) Originating in or Consigned from the People’s Republic of China Subject to Registration. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R0182 (accessed on 16 May 2016).
- LME, London Metal Exchange. Available online: http://www.lme.com/ (accessed on 15 May 2016).
- Dufo-López, R.; Bernal-Agustín, J.L.; Yusta-Loyo, J.M.; Domínguez-Navarro, J.A.; Ramírez-Rosado, I.J.; Lujano, J.; Aso, I. Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage. Appl. Energy 2011, 88, 4033–4041. [Google Scholar] [CrossRef]
- McManus, M.C. Environmental consequences of the use of batteries in low carbon systems: The impact of battery production. Appl. Energy 2012, 93, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Balcombe, P.; Rigby, D.; Azapagic, A. Environmental impacts of microgeneration: Integrating solar PV, Stirling engine CHP and battery storage. Appl. Energy 2015, 139, 245–259. [Google Scholar] [CrossRef]
Month | Ed | Em | Hd | Hm |
---|---|---|---|---|
January | 2.09 | 64.70 | 2.61 | 80.90 |
February | 3.13 | 87.70 | 3.94 | 110.00 |
March | 4.21 | 131.00 | 5.46 | 169.00 |
April | 4.50 | 135.00 | 5.96 | 179.00 |
May | 4.96 | 154.00 | 6.74 | 209.00 |
June | 5.31 | 159.00 | 7.38 | 221.00 |
July | 5.57 | 173.00 | 7.80 | 242.00 |
August | 5.06 | 157.00 | 7.04 | 218.00 |
September | 4.33 | 130.00 | 5.86 | 176.00 |
October | 3.33 | 103.00 | 4.38 | 136.00 |
November | 2.39 | 71.70 | 3.03 | 91.00 |
December | 1.91 | 59.10 | 2.38 | 73.80 |
Component | Price per Watt (€/W) (Market Research) | Life Cycle CO2 Emissions [42] |
---|---|---|
PV Panel | 0.55 | 800 kg/kWp |
Mounting structure | 0.34 | Included in PV panel |
Diesel Generator | 0.42 | 3.5 kg/litre of diesel fuel |
Inverter with MPPT | 0.24 | Neglected |
Controller | 0.31 | Neglected |
Project | NPC (€) | PV Power (Wp) | Diesel-Generator Power (VA) | Inverter Power (W) | Life Cycle CO2 Emissions (kg/year) | LCOE * (€/kWh) |
---|---|---|---|---|---|---|
1 | 84,546.67 | 5040 | 1900 | 1800 | 5502.58 | 0.927 |
2 | 84,966.16 | 4480 | 1900 | 1800 | 5547.78 | 0.931 |
3 | 86,084.03 | 3920 | 1900 | 1800 | 5632.78 | 0.943 |
4 | 87,056.42 | 3360 | 1900 | 1800 | 5717.98 | 0.954 |
5 | 89,193.91 | 2800 | 1900 | 1800 | 5882.74 | 0.977 |
6 | 94,039.39 | 2240 | 1900 | 1800 | 6239.74 | 1.031 |
7 | 106,169.12 | 1680 | 1900 | 1800 | 7108.84 | 1.163 |
8 | 120,735.10 | 5040 | 3000 | 1800 | 8494.37 | 1.323 |
9 | 121,567.34 | 4480 | 3000 | 1800 | 8574.74 | 1.332 |
10 | 123,412.16 | 3920 | 3000 | 1800 | 8717.81 | 1.352 |
Project | NPC (€) | PV Power (Wp) | Diesel-Generator Power (VA) | Battery Bank (Wh) | Energy Supplied by Diesel (%) | Life Cycle CO2 Emissions (kg/year) | LCOE (€/kWh) |
---|---|---|---|---|---|---|---|
1 | 22,039.73 | 3920 | 1900 | 8640 | 1.48 | 297.38 | 0.242 |
2 | 22,274.81 | 4480 | 1900 | 8640 | 1.07 | 288.27 | 0.244 |
3 | 22,729.77 | 5040 | 1900 | 8640 | 1.04 | 305.09 | 0.249 |
4 | 22,915.09 | 3920 | 3000 | 8640 | 2.27 | 353.31 | 0.251 |
5 | 22,959.44 | 4480 | 3000 | 8640 | 1.59 | 326.97 | 0.252 |
6 | 23,402.75 | 5040 | 3000 | 8640 | 1.56 | 342.72 | 0.256 |
7 | 23,448.29 | 3920 | 1900 | 18,720 | 0.03 | 289.23 | 0.257 |
8 | 23,714.68 | 3920 | 3000 | 18,720 | 0.05 | 290.28 | 0.260 |
9 | 24,205.69 | 4480 | 1900 | 18,720 | 0.01 | 314.26 | 0.265 |
10 | 24,230.97 | 3920 | 1900 | 12,960 | 0.22 | 249.2 | 0.266 |
Project | NPC (€) | PV Power (Wp) | Inverter Power (W) | Life Cycle CO2 Emissions (kg/year) | LCOE (€/kWh) |
---|---|---|---|---|---|
1 | 6992.04 | 2240 | 1800 | 536.35 | 0.077 |
2 | 7283.79 | 2800 | 1800 | 528.34 | 0.080 |
3 | 7992.29 | 3360 | 1800 | 532.1 | 0.088 |
4 | 8700.79 | 3920 | 1800 | 540.31 | 0.095 |
5 | 9054.32 | 1680 | 1800 | 585.91 | 0.099 |
6 | 9409.29 | 4480 | 1800 | 551.05 | 0.103 |
7 | 10,117.78 | 5040 | 1800 | 563.49 | 0.111 |
8 | 11,235.35 | 1120 | 1800 | 778.75 | 0.123 |
9 | 13,534.41 | 560 | 1800 | 1113.97 | 0.148 |
10 | 15,057.88 | 0 | 0 | 1459.99 | 0.165 |
Case Study | Off-Grid/Net-Metering | Optimal Configuration | NPC (€) | LCOE (€/kWh) | Life Cycle CO2 Emissions (kg/year) | |||
---|---|---|---|---|---|---|---|---|
PV Size (kW) | Inverter (kW) | Diesel Generator (kVA) | Battery Size (kWh) | |||||
PV + Diesel | Off-grid | 5.04 | 1.8 | 1.9 | N/A | 84,546 | 0.927 | 5502 |
PV + Diesel + Batteries | Off-grid | 3.92 | 1.8 | 1.9 | 8.64 | 22,039 | 0.242 | 297 |
PV-only + Net | Net-metering | 2.24 | 1.8 | N/A | N/A | 6,992 | 0.077 | 536 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarasa-Maestro, C.J.; Dufo-López, R.; Bernal-Agustín, J.L. Analysis of Photovoltaic Self-Consumption Systems. Energies 2016, 9, 681. https://doi.org/10.3390/en9090681
Sarasa-Maestro CJ, Dufo-López R, Bernal-Agustín JL. Analysis of Photovoltaic Self-Consumption Systems. Energies. 2016; 9(9):681. https://doi.org/10.3390/en9090681
Chicago/Turabian StyleSarasa-Maestro, Carlos J., Rodolfo Dufo-López, and José L. Bernal-Agustín. 2016. "Analysis of Photovoltaic Self-Consumption Systems" Energies 9, no. 9: 681. https://doi.org/10.3390/en9090681
APA StyleSarasa-Maestro, C. J., Dufo-López, R., & Bernal-Agustín, J. L. (2016). Analysis of Photovoltaic Self-Consumption Systems. Energies, 9(9), 681. https://doi.org/10.3390/en9090681