Next Article in Journal
Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices
Previous Article in Journal
A Study on Price-Based Charging Strategy for Electric Vehicles on Expressways
Open AccessArticle

Modelling, Testing and Analysis of a Regenerative Hydraulic Shock Absorber System

School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
*
Author to whom correspondence should be addressed.
Academic Editor: Paul Stewart
Energies 2016, 9(5), 386; https://doi.org/10.3390/en9050386
Received: 31 March 2016 / Revised: 7 May 2016 / Accepted: 12 May 2016 / Published: 19 May 2016
To improve vehicle fuel economy whilst enhancing road handling and ride comfort, power generating suspension systems have recently attracted increased attention in automotive engineering. This paper presents our study of a regenerative hydraulic shock absorber system which converts the oscillatory motion of a vehicle suspension into unidirectional rotary motion of a generator. Firstly a model which takes into account the influences of the dynamics of hydraulic flow, rotational motion and power regeneration is developed. Thereafter the model parameters of fluid bulk modulus, motor efficiencies, viscous friction torque, and voltage and torque constant coefficients are determined based on modelling and experimental studies of a prototype system. The model is then validated under different input excitations and load resistances, obtaining results which show good agreement between prediction and measurement. In particular, the system using piston-rod dimensions of 50–30 mm achieves recoverable power of 260 W with an efficiency of around 40% under sinusoidal excitation of 1 Hz frequency and 25 mm amplitude when the accumulator capacity is set to 0.32 L with the load resistance 20 Ω. It is then shown that the appropriate damping characteristics required from a shock absorber in a heavy-haulage vehicle can be met by using variable load resistances and accumulator capacities in a device akin to the prototype. The validated model paves the way for further system optimisation towards maximising the performance of regeneration, ride comfort and handling. View Full-Text
Keywords: suspension; shock absorber; modelling; power regeneration; parameter identification suspension; shock absorber; modelling; power regeneration; parameter identification
Show Figures

Figure 1

MDPI and ACS Style

Wang, R.; Gu, F.; Cattley, R.; Ball, A.D. Modelling, Testing and Analysis of a Regenerative Hydraulic Shock Absorber System. Energies 2016, 9, 386.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop