Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies
Abstract
:1. Introduction
- What products do biomethane providers offer and at which prices?
- What connections between product features and prices can be observed?
2. How Research on WTP for Green Electricity Can Inform Biomethane Marketing
- ■
- ■
- ■
- ■
- H1:
- The share of biomethane in a product is positively related to the price.
- H2:
- The extra climate protection fee is related to the price.
- H3:
- Waste as an input material is positively related to the price while energy crops are negatively related to the price.
- H4:
- Eco-labels are positively related to the price.
3. Methods
- •
- Search only for biogas-based products;
- •
- One-off bonuses were not included in the price calculation;
- •
- Contract period was set to up to 12 months;
- •
- For the following criteria, we chose “doesn’t matter”: notice period, direct provider change, and “product fulfills Verivox guidelines”;
- •
- Price guarantees were not considered, since they were not available for each product;
- •
- The following search options were deselected: package rate, deposit, advance payment and “only providers with high customer recommendation ratio”;
- •
- Number of products displayed per provider was set to “display all”.
4. Results
4.1. H1: The Share of Biomethane in a Product Is Positively Related to the Price
4.2. H2: The “Extra Climate Protection” Fee Is Positively Related to the Price
4.3. H3: Waste as an Input Material is Positively Related to the Price While Energy Crops as Input are Negatively Related to the Price
4.4. H4: Eco-Labels Are Positively Related to the Price
5. Discussion and Conclusions
- While there is a clear positive correlation between biomethane content and price on a per provider basis, the comparison of annual consumer costs across different providers does not reveal a clear picture.
- Products with an extra climate protection feature do not collect a higher premium than products without the feature offered by the same provider. Across different providers, the former are even cheaper than the latter.
- Neither on a per provider basis nor on an overall market basis does price show a relation to the use of energy crops or waste as the biogas substrate.
- Eco-labels also do not directly influence price premiums on a per provider basis. On the market basis, annual consumer costs for eco-labeled products are even lower than non-labeled products.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bürgin, A. National binding renewable energy targets for 2020, but not for 2030 anymore: Why the European Commission developed from a supporter to a brakeman. J. Eur. Public Policy 2014, 22, 690–707. [Google Scholar] [CrossRef]
- Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply; Federal Ministry of Economics and Technology, Federal Ministry for the Environment, Nature-Conservation and Nuclear Safety: Berlin, Germany, 2010.
- Eurostat. SHARES (Renewables)—Eurostat, 2015. Available online: http://ec.europa.eu/eurostat/web/energy/data/shares (accessed on 23 July 2015).
- Connor, P.; Bürger, V.; Beurskens, L.; Ericsson, K.; Egger, C. Devising renewable heat policy: Overview of support options. Energy Policy 2013, 59, 3–16. [Google Scholar] [CrossRef]
- Dena. Biogasregister.de: English Information, 2015. Available online: http://www.biogasregister.de/index.php?id=713 (accessed on 23 July 2015).
- European Biogas Association. Number of biogas plants in Europe, 2015. Available online: http://european-biogas.eu/wp-content/uploads/2015/02/Biogas-graph-20131.png (accessed on 23 July 2015).
- Dena. Branchenbarometer Biomethan. Daten, Fakten und Trends zur Biomethaneinspeisung, 2014. Available online: http://www.biogaspartner.de/branchenbarometer.html (accessed on 23 July 2015).
- Ministère de L’écologie, du Développement Durable et de L’énergie. Pour L’injection Dans les Réseaux de gaz Naturel: Un Tarif D’achat du Biométhane Injecté, 2015. Available online: http://www.developpement-durable.gouv.fr/Pour-l-injection-dans-les-reseaux.html (accessed on 23 July 2015).
- Olsson, L.; Fallde, M. Waste(d) potential: A socio-technical analysis of biogas production and use in Sweden. J. Clean. Prod. 2015, 98, 107–115. [Google Scholar] [CrossRef]
- Wunderlich, C. Akzeptanz und Bürgerbeteiligung für Erneuerbare Energien, Erkenntnisse aus Akzeptanz-und Partizipationsforschung, 2012. Available online: http://www.unendlich-viel-energie.de/mediathek/hintergrundpapiere/akzeptanz-und-buergerbeteiligung-fuer-erneuerbare-energien (accessed on 15 September 2015).
- Boie, I.; Fernandes, C.; Frías, P.; Klobasa, M. Efficient strategies for the integration of renewable energy into future energy infrastructures in Europe—An analysis based on transnational modeling and case studies for nine European regions. Energy Policy 2014, 67, 170–185. [Google Scholar] [CrossRef]
- Gawel, E.; Purkus, A. Promoting the market and system integration of renewable energies through premium schemes—A case study of the German market premium. Energy Policy 2013, 61, 599–609. [Google Scholar] [CrossRef]
- Lang, M.; Lang, A. The 2014 German Renewable Energy Sources Act revision—From feed-in tariffs to direct marketing to competitive bidding. J. Energy Nat. Resour. Law 2015, 33, 131–146. [Google Scholar] [CrossRef]
- Kaltefleiter, B.; Enke, M. Ansätze zur De-Commoditisierung im Energiesektor—Das Fallbeispiel VNG. In Commodity Marketing—Grundlagen, Besonderheiten, Erfahrungen: 2. Auflage; Enke, M., Geigenmüller, A., Eds.; Gabler: Wiesbaden, Germany, 2011; pp. 479–490. [Google Scholar]
- Herbes, C.; Ramme, I. Online marketing of green electricity in Germany—A content analysis of providers’ websites. Energy Policy 2014, 66, 257–266. [Google Scholar] [CrossRef]
- Herbes, C. Marketing green electricity: How green is your green electricity? Sun Wind Energy 2014, 10, 20–24. [Google Scholar]
- Top Agrar Online. Teurer Ökostrom Ist ein Irrglaube. Retrieved, 12 April 2013. Available online: http://www.topagrar.com/news/Energie-Energienews-Oekostrom-nichtteurer (accessed on 12 April 2013).
- Grope, J. Ökonomische Analyse der Nutzungsmöglichkeiten von Biomethan. 2013. Available online: http://www.biogasundenergie.de/downloads/scholwin_publication_16.pdf (accessed on 23 February 2016). (In German)
- Agency for Renewable Resources. Bioenergy in Germany: Facts and Figures (January 2014); FNR: Guelzow, Germany, 2014. [Google Scholar]
- Poeschl, M.; Ward, S.; Owende, P. Prospects for expanded utilization of biogas in Germany. Renew. Sustain. Energy Rev. 2010, 14, 1782–1797. [Google Scholar] [CrossRef]
- Forsa. Vorstellungen und Erwartungen der Verbraucher in Bezug auf Biogasangebote; Bericht: Berlin, Germany, 2013. [Google Scholar]
- Herbes, C.; Friege, C.; Baldo, D.; Mueller, K.-M. Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity. Energy Policy 2015, 87, 562–572. [Google Scholar] [CrossRef]
- Power, N.M.; Murphy, J.D. Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol? Biomass Bioenergy 2009, 33, 1403–1412. [Google Scholar] [CrossRef]
- Adams, P.; Mezzullo, W.G.; McManus, M.C. Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities. Energy Policy 2015, 87, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Michlik, L.; Lucht, W.; Bondeau, A.; Beringer, T. Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach. Renew. Sustain. Energy Rev. 2011, 15, 2791–2809. [Google Scholar] [CrossRef]
- Britz, W.; Delzeit, R. The impact of German biogas production on European and global agricultural markets, land use and the environment. Energy Policy 2013, 62, 1268–1275. [Google Scholar] [CrossRef]
- Huttunen, S.; Manninen, K.; Leskinen, P. Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level. J. Clean. Prod. 2014, 80, 5–16. [Google Scholar] [CrossRef]
- Poeschl, M.; Ward, S.; Owende, P. Environmental impacts of biogas deployment—Part II: Life cycle assessment of multiple production and utilization pathways. J. Clean. Prod. 2012, 24, 184–201. [Google Scholar] [CrossRef]
- Balussou, D.; Kleyböcker, A.; McKenna, R.; Möst, D.; Fichtner, W. An Economic Analysis of Three Operational Co-digestion Biogas Plants in Germany. Waste Biomass Valoriz. 2012, 3, 23–41. [Google Scholar] [CrossRef]
- Schinnerl, D.; Bleyl-Androschin, J.W.; Eder, M. (Eds.) Wirtschaftlichkeit von Biomethan Nutzungspfaden; Technischen Universität Graz: Graz, Austria, 2010. (In German)
- Daniel-Gromke, J.; Denysenko, V.; Barchmann, T.; Reinel, T.; Trommler, M. Aufbereitung von Biogas zu Biomethan und Dessen Nutzung, Status Quo und Perspektiven, 2014. Available online: http://www.vivis.de/index.php?option=com_phocadownload&view=category&id=90:biogasvergaerung&Itemid=206ved=0CCEQFjAA&url=http%3A%2F%2Fwww.vivis.de%2Fphocadownload%2F2014_is%2F2014_IS_133_150_Daniel_Gromke_neu.pdf&ei=kI3YVIbJMsHesATznoLACQ&usg=AFQjCNEgnNAbQKKZLcuY8rjpzST3Nsy28g&bvm=bv.85464276,d.ZGU (accessed on 23 February 2016).
- Herbes, C.; Hess, F. Herausforderungen in Marketing und Vertrieb von Biomethan—Ein Neuer Markt entsteht. In Tagungsband 5. Rostocker Bioenergieforum 2011; Nelles, M., Ed.; Rostock University: Rostock, Germany, 2011; Volume 30, pp. 95–110. [Google Scholar]
- Akcura, E. Mandatory versus Voluntary Payment for Green Electricity; Working Paper No. 161; European Bank for Reconstruction and Development: London, UK, 2013. [Google Scholar]
- Aravena, C.; Hutchinson, W.G.; Longo, A. Environmental pricing of externalities from different sources of electricity generation in Chile. Energy Econ. 2012, 34, 1214–1225. [Google Scholar] [CrossRef]
- Kosenius, A.-K.; Ollikainen, M. Valuation of environmental and societal trade-offs of renewable energy sources. Energy Policy 2013, 62, 1148–1156. [Google Scholar] [CrossRef]
- Mozumder, P.; Vásquez, W.F.; Marathe, A. Consumers’ preference for renewable energy in the southwest USA. Energy Econ. 2011, 33, 1119–1126. [Google Scholar] [CrossRef]
- Gossling, S.; Kunkel, T.; Schumacher, K.; Heck, N.; Birkemeyer, J.; Froese, J.; Naber, N.; Schliermann, E. A target group-specific approach to “green” power retailing: Students as consumers of renewable energy. Renew. Sustain. Energy Rev. 2005, 9, 69–83. [Google Scholar] [CrossRef]
- Roe, B.; Teisl, M.F.; Levy, A.; Russell, M. US consumers’ willingness to pay for green electricity. Energy Policy 2001, 29, 917–925. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Kwak, S.-Y. Willingness to pay for green electricity in Korea: A contingent valuation study. Energy Policy 2009, 37, 5408–5416. [Google Scholar] [CrossRef]
- Zografakis, N.; Sifaki, E.; Pagalou, M.; Nikitaki, G.; Psarakis, V.; Tsagarakis, K.P. Assessment of public acceptance and willingness to pay for renewable energy sources in Crete. Renew. Sustain. Energy Rev. 2010, 14, 1088–1095. [Google Scholar] [CrossRef]
- Oliver, H.; Volschenk, J.; Smit, E. Residential consumers in the Cape Peninsula’s willingness to pay for premium priced green electricity. Energy Policy 2011, 39, 544–550. [Google Scholar] [CrossRef]
- Clark, C.F.; Kotchen, M.J.; Moore, M.R. Internal and external influences on pro-environmental behavior: Participation in a green electricity program. J. Environ. Psychol. 2003, 23, 237–246. [Google Scholar] [CrossRef]
- MacPherson, R.; Lange, I. Determinants of green electricity tariff uptake in the UK. Energy Policy 2013, 62, 920–933. [Google Scholar] [CrossRef]
- Savvanidou, E.; Zervas, E.; Tsagarakis, K.P. Public acceptance of biofuels. Energy Policy 2010, 38, 3482–3488. [Google Scholar] [CrossRef]
- Nomura, N.; Akai, M. Willingness to pay for green electricity in Japan as estimated through contingent valuation method. Appl. Energy 2004, 78, 453–463. [Google Scholar] [CrossRef]
- Hansla, A.; Gamble, A.; Juliusson, A.; Gärling, T. Psychological determinants of attitude towards and willingness to pay for green electricity. Energy Policy 2008, 36, 768–774. [Google Scholar] [CrossRef]
- Borchers, A.M.; Duke, J.M.; Parsons, G.R. Does willingness to pay for green energy differ by source? Energy Policy 2007, 35, 3327–3334. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.; Mao, X.; Jin, J.; Chen, D.; Cheng, S. Willingness to pay for renewable electricity: A contingent valuation study in Beijing, China. Energy Policy 2014, 68, 340–347. [Google Scholar] [CrossRef]
- Menges, R.; Traub, S. Staat versus Markt: Konsumentenpräfenzen und die Förderung erneuerbarer Energien. Z. Energiewirtschaft 2008, 32, 262–270. [Google Scholar] [CrossRef]
- Menges, R.; Traub, S. An Experimental Study on the Gap between Willingness to Pay and Willingness to Donate for Green Electricity. Finanzarchiv 2009, 65, 335–357. [Google Scholar] [CrossRef]
- Wiser, R.H. Using contingent valuation to explore willingness to pay for renewable energy: A comparison of collective and voluntary payment vehicles. Ecol. Econ. 2007, 62, 419–432. [Google Scholar]
- Kaenzig, J.; Heinzle, S.L.; Wüstenhagen, R. Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany. Energy Policy 2013, 53, 311–322. [Google Scholar] [CrossRef]
- Sagebiel, J.; Müller, J.R.; Rommel, J. Are consumers willing to pay more for electricity from cooperatives? Results from an online Choice Experiment in Germany. Energy Res. Soc. Sci. 2014, 2, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Goett, A.A.; Hudson, K.; Train, K.E. Customers’ Choice among Retail Energy Suppliers: The Willingness-to-Pay for Service Attributes. Energy J. 2000, 21, 1–28. [Google Scholar] [CrossRef]
- Ku, S.-J.; Yoo, S.-H. Willingness to pay for renewable energy investment in Korea: A choice experiment study. Renew. Sustain. Energy Rev. 2010, 14, 2196–2201. [Google Scholar] [CrossRef]
- Ladenburg, J.; Dubgaard, A. Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark. Energy Policy 2007, 35, 4059–4071. [Google Scholar] [CrossRef]
- Navrud, S.; Braten, K.G. Consumers’ preferences for green and brown electricity: A choice modelling approach. Rev. Écon. Polit. 2007, 117, 795–811. [Google Scholar] [CrossRef]
- Grosche, P.; Schroder, C. Eliciting Public Support for Greening the Electricity Mix Using Random Parameter Techniques. Energy Econ. 2011, 33, 363–370. [Google Scholar] [CrossRef]
- Farhar, B.C.; Houston, A.H. Willingness to Pay for Electricity from Renewable Energy; National Renewable Energy Laboratory: Golden, CO, USA, 1996.
- Bergmann, A.; Hanley, N.; Wright, R. Valuing the attributes of renewable energy investments. Energy Policy 2006, 34, 1004–1014. [Google Scholar] [CrossRef]
- Longo, A.; Markandya, A.; Petrucci, M. The internalization of externalities in the production of electricity: Willingness to pay for the attributes of a policy for renewable energy. Ecol. Econ. 2008, 67, 140–152. [Google Scholar] [CrossRef]
- Truffer, B.; Markard, J.; Wüstenhagen, R. Eco-labeling of electricity—Strategies and tradeoffs in the definition of environmental standards. Energy Policy 2001, 29, 885–897. [Google Scholar] [CrossRef]
- Mattes, A. Grüner Strom: Verbraucher sind bereit, für Investitionen in erneuerbare Energien zu zahlen. DIW-Wochenbericht 2012, 79, 2–9. (In German) [Google Scholar]
- Scarlat, N.; Dallemand, J.-F. Recent developments of biofuels/bioenergy sustainability certification: A global overview. Energy Policy 2011, 39, 1630–1646. [Google Scholar] [CrossRef]
- Schubert, R.; Blasch, J. Sustainability standards for bioenergy—A means to reduce climate change risks? Energy Policy 2010, 38, 2797–2805. [Google Scholar] [CrossRef]
- Meyer, M.A.; Priess, J.A. Indicators of bioenergy-related certification schemes—An analysis of the quality and comprehensiveness for assessing local/regional environmental impacts. Biomass Bioenergy 2014, 65, 151–169. [Google Scholar] [CrossRef]
- Loßner, M.; Gawel, E.; Herbes, C. Einsatz von Biomethan in Neubauten nach EEWärmeG—Eine Hemmnis-und Wirtschaftlichkeitsanalyse. Z. Energiewirtschaft 2012, 36, 267–283. [Google Scholar] [CrossRef]
- Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg. Erneuerbare-Wärme-Gesetz BW (EWärmeG) für Bestandsgebäude, 2010. Available online: https://um.baden-wuerttemberg.de/de/energie/energieeffizienz/erneuerbare-waerme-gesetz-bw/ (accessed on 9 February 2015).
- Bodensee Energie. Unsere Klimaschutzprojekte, 2015. Available online: http://www.bodensee-energie.de/be/tarife/privatkunden-klima-gas/klimaprojekte.php (accessed on 9 February 2015).
- Herbes, C.; Jirka, E.; Braun, J.P.; Pukall, K. Der gesellschaftliche Diskurs um den ”Maisdeckel” vor und nach der Novelle des Erneuerbare-Energien-Gesetzes (EEG). 2012 The Social Discourse on the “Maize Cap“ before and after the 2012 Amendment of the German Renewable Energies Act (EEG). GAIA Ecol. Perspect. Sci. Soc. 2014, 23, 100–108. [Google Scholar] [CrossRef]
- Herbes, C.; Pusisek, A.; McKenna, R.; Balussou, D. Überraschende Diskrepanz bei Biogas: Lokal akzeptiert, global umstritten. Energiewirtschaftliche Tagesfr. 2014, 64, 53–56. [Google Scholar]
- Deutsches Institut für Service-Qualität. Studie Energietarifrechner (24 September 2013), 2013. Available online: http://disq.de/2013/20130924-Energietarifrechner.html (accessed on 25 July 2015).
- Arms, H.; Stender, A.; Lang, V.; Seifried, A.-C. Der Strom- und Gasvertrieb im Wandel, Unabhängige Anbieter am Scheideweg, 2012. Available online: http://www.atkearney.de/documents/856314/1214638/BIP_Der_Strom_und_Gasvertrieb_im_Wandel.pdf/ee091e7c-9406-4b23-b5b3-608f936cbecc (accessed on 24 July 2015).
- Diaz-Rainey, I.; Ashton, J.K. Stuck between a ROC and a hard place? Barriers to the take up of green energy in the UK. Energy Policy 2008, 36, 3053–3061. [Google Scholar] [CrossRef]
- Mizuno, T.; Nirei, M.; Watanabe, T. Closely Competing Firms and Price Adjustment: Some Findings from an Online Marketplace. Scand. J. Econ. 2010, 112, 673–696. [Google Scholar] [CrossRef]
- McDonald, S.; Wren, C. Informative Brand Advertising and Pricing Strategies in Internet Markets with Heterogeneous Consumer Search. Int. J. Econ. Bus. 2012, 19, 103–117. [Google Scholar] [CrossRef]
- Wenhong, L.; Chung, Q.B. Retailer reputation and online pricing strategy. J. Comput. Inf. Syst. 2010, 50, 50–56. [Google Scholar]
- Frondel, M.; Andor, M.; Ritter, N.; Tauchmann, H.; Vance, C.; Matuschek, P.; Müller, U. Erhebung des Energieverbrauchs der Privaten Hausehalte für die Jahre 2009–2010, 2011. Available online: http://www.rwi-essen.de/media/content/pages/publikationen/rwi-projektberichte/PB_Energieverbrauch-priv-HH-2009-2010.pdf (accessed on 9 February 2015).
Biomethane Content | Products in this Category | Percentage of the Market |
---|---|---|
1% | 2 | 1% |
5% | 20 | 12% |
10% | 90 | 55% |
20% | 9 | 5% |
25% | 5 | 3% |
30% | 25 | 15% |
50% | 1 | 1% |
100% | 13 | 8% |
Total | 165 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herbes, C.; Braun, L.; Rube, D. Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies. Energies 2016, 9, 252. https://doi.org/10.3390/en9040252
Herbes C, Braun L, Rube D. Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies. Energies. 2016; 9(4):252. https://doi.org/10.3390/en9040252
Chicago/Turabian StyleHerbes, Carsten, Lorenz Braun, and Dennis Rube. 2016. "Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies" Energies 9, no. 4: 252. https://doi.org/10.3390/en9040252
APA StyleHerbes, C., Braun, L., & Rube, D. (2016). Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies. Energies, 9(4), 252. https://doi.org/10.3390/en9040252