# HVDC-System-Interaction Assessment through Line-Flow Change-Distribution Factor and Transient-Stability Analysis at Planning Stage

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- Interconnection between power systems with different frequencies, or asynchronous systems
- Environmental benefits regarding right-of-way width, radio interference, and underground cables
- Power transmission over hundreds of miles
- Transmission-power control

## 2. Voltage Interaction

#### 2.1. Multi-Infeed Interaction Factor

- Dynamic simulation
- Network admittance calculation
- Fault current calculation

#### 2.2. Multi-Infeed Effective Short Circuit Ratio

## 3. Line Flow Change Distribution Factor

## 4. Simulation Result

#### 4.1. Modified IEEE 39 Bus Test System

#### 4.2. Korean Power System

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Axelsson, U.; Holm, A.; Liljegren, C.; Eriksson, K.; Weimers, L. Gotland HVDC light transmission—World’s first commercial small scale DC transmission. In Proceedings of the CIRED Conference, Nice, France, 1–4 June 1999.
- Long, W.; Nilsson, S. HVDC transmission: Yesterday and today. IEEE Power Energy Mag.
**2007**, 5, 22–31. [Google Scholar] [CrossRef] - ABB. The Gotland HVDC Link. Available online: http://new.abb.com/systems/hvdc/references/the-gotland-hvdc-link (accessed on 30 August 2016).
- Kim, C.K.; Sood, V.K.; Jang, G.; Lim, S.J.; Lee, S.J. HVDC Transmission: Power Conversion Applications in Power Systems, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bui, L.; Sood, V.; Laurin, S. Dynamic interactions between HVDC systems connected to ac buses in close proximity. IEEE Trans. Power Deliv.
**1991**, 6, 223–230. [Google Scholar] [CrossRef] - Rahimi, E.; Gole, A.; Davies, J.; Fernando, I.T.; Kent, K. Commutation failure analysis in multi-infeed HVDC systems. IEEE Trans. Power Deliv.
**2011**, 26, 378–384. [Google Scholar] [CrossRef] - Aik, D.L.H.; Andersson, G. Voltage stability analysis of multi-infeed HVDC systems. IEEE Trans. Power Deliv.
**1997**, 12, 1309–1318. [Google Scholar] [CrossRef] - Aik, D.L.H.; Andersson, G. Power stability analysis of multi-infeed HVDC systems. IEEE Trans. Power Deliv.
**1998**, 13, 923–931. [Google Scholar] [CrossRef] - Xiao, H.; Li, Y.; Zhu, J.; Duan, X. Efficient approach to quantify commutation failure immunity levels in multi-infeed HVDC systems. IET Gener. Transm. Distrib.
**2016**, 10, 1032–1038. [Google Scholar] [CrossRef] - Davies, J. Systems with multiple DC infeed. Electra-Cigre
**2007**, 233, 14. [Google Scholar] - Rahimi, E. Voltage Interactions and Commutation Failure Phenomena in Multi-Infeed HVDC Systems. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2011. [Google Scholar]
- 1204–1997-IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities. Available online: http://ieeexplore.ieee.org/document/653230/ (accessed on 14 December 2016).
- Kundur, P.; Balu, N.J.; Lauby, M.G. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Wang, P.; Zhang, Y.; Chen, H.; Li, X.; Song, S.; Bai, J. Analysis on the interaction of AC/DC systems based on multi-infeed Q effective short circuit ratio. In Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, 27–29 March 2012.
- Chen, X.; Gole, A.M.; Han, M. Analysis of mixed inverter/rectifier multi-infeed HVDC systems. IEEE Trans. Power Deliv.
**2012**, 27, 1565–1573. [Google Scholar] [CrossRef] - Liu, D.; Shi, D.; Li, Y. A new definition of short-circuit ratio for multi-converter HVDC systems. J. Electr. Eng. Technol.
**2015**, 10, 1958–1968. [Google Scholar] [CrossRef] - Aik, D.L.H.; Andersson, G. Analysis of voltage and power interactions in multi-infeed HVDC systems. IEEE Trans. Power Deliv.
**2013**, 28, 816–824. [Google Scholar] [CrossRef] - Christie, R.D.; Wollenberg, B.F.; Wangensteen, I. Transmission management in the deregulated environment. Proc. IEEE
**2000**, 88, 170–195. [Google Scholar] [CrossRef] - Siemens, P.T.I. PSS/E 33.0 Program Application Guide: Volume II; Siemens P.T.I.: Schenectady, NY, USA, 2011. [Google Scholar]

**Figure 5.**Test system case 1 MIIF simulation result by dynamic method: (

**a**) MIIF1 simulation result; (

**b**) MIIF2 simulation result; (

**c**) MIIF3 simulation result; and (

**d**) MIIF4 simulation result.

**Figure 6.**Test system case 2 MIIF simulation result by dynamic method: (

**a**) MIIF1 simulation result; (

**b**) MIIF2 simulation result; (

**c**) MIIF3 simulation result; and (

**d**) MIIF4 simulation result.

**Figure 8.**Existing HVDC in test system performance from the transient stability simulation: (

**a**) active power transmission; (

**b**) DC voltage of rectifier; (

**c**) alpha angle; and (

**d**) angle spread of AC system.

**Figure 9.**Korean power system case 1 MIIF simulation result by dynamic method: (

**a**) MIIF1 simulation result; (

**b**) MIIF2 simulation result; (

**c**) MIIF3 simulation result; and (

**d**) MIIF4 simulation result.

**Figure 10.**Korean power-system case 2 MIIF simulation result by dynamic method: (

**a**) MIIF1 simulation result; (

**b**) MIIF2 simulation result; (

**c**) MIIF3 simulation result; and (

**d**) MIIF4 simulation result.

**Figure 11.**Existing HVDC in Korean power system performance from the transient stability simulation: (

**a**) active power transmission; (

**b**) DC voltage of rectifier; (

**c**) alpha angle; and (

**d**) angle spread of AC system.

**Figure 12.**New HVDC system performance from the transient stability simulation: (

**a**) active power transmission; (

**b**) DC voltage of rectifier.

Bus | Actual Fault Current (kA) | Fault Current (p.u.) |
---|---|---|

Fault at bus i | 8.3217 | 0.701 |

Fault at bus j | 9.376 | 0.790 |

Fault at both bus | 11.8719 | 1.0 |

$MII{F}_{i,j}$ | 0.4647 | |

$MII{F}_{j,i}$ | 0.5236 |

Case Number | Line-Flow Change Distribution Factor | MIIF1 (II) | MIIF2 (IR) | MIIF3 (RI) | MIIF4 (RR) |
---|---|---|---|---|---|

Case 1 | 0.3341 | 0.4041 | 0.2123 | 0.1435 | 0.4862 |

Case 2 | 0.0432 | 0.1479 | 0.1799 | 0.0794 | 0.1513 |

Case Number | Line-Flow Change Distribution Factor | MIIF1 (II) | MIIF2 (IR) | MIIF3 (RI) | MIIF4 (RR) |
---|---|---|---|---|---|

Case 1 | 0.1063 | 0.2051 | 0.3929 | 0.0338 | 0.2152 |

Case 2 | 0.0165 | 0.3343 | 0.0707 | 0.9110 | 0.1867 |

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hwang, S.; Lee, J.; Jang, G. HVDC-System-Interaction Assessment through Line-Flow Change-Distribution Factor and Transient-Stability Analysis at Planning Stage. *Energies* **2016**, *9*, 1068.
https://doi.org/10.3390/en9121068

**AMA Style**

Hwang S, Lee J, Jang G. HVDC-System-Interaction Assessment through Line-Flow Change-Distribution Factor and Transient-Stability Analysis at Planning Stage. *Energies*. 2016; 9(12):1068.
https://doi.org/10.3390/en9121068

**Chicago/Turabian Style**

Hwang, Sungchul, Jaegul Lee, and Gilsoo Jang. 2016. "HVDC-System-Interaction Assessment through Line-Flow Change-Distribution Factor and Transient-Stability Analysis at Planning Stage" *Energies* 9, no. 12: 1068.
https://doi.org/10.3390/en9121068