# Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Modeling

#### 2.1. Wind Turbine

_{p}is the power coefficient, which is a function of tip speed ratio λ and pitch angle β.

_{p}, as well as the generated output power of the wind turbine.

#### 2.2. Modeling of Doubly Fed Induction Machine (DFIM)

## 3. Control Strategy of Doubly Fed Induction Generator

#### 3.1. Grid Side Controller

_{d}, v

_{q}are the grid voltage (d-q) components; v

_{dl}, v

_{ql}are the grid inverter voltage (d-q) components; i

_{d}, i

_{q}are the grid current (d-q) components; L and R are the inductance and resistance of the filter; and ω is the grid angular frequency.

#### 3.2. Machine Side Controller

_{α}, v

_{β}, i

_{α}and i

_{β}. The stator flux in the stationary (α-β) reference frame is given by:

## 4. Experimental Results

#### 4.1. Power Control by Rotor D-Current

#### 4.2. Power Control by Rotor Q-Current

#### 4.3. Effect of the DC-Link Voltage Variation on the Rotor Current Control

#### 4.4. Effects of Variable Rotor Speed on the Rotor Current Control

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix

Quantity | Value |
---|---|

DFIG machine | |

Power | 2 kW |

Stator voltage | 120 V |

Rotor voltage | 360 V |

Stator current | 10 A |

Rotor current | 3.3 A |

Speed | 1800 RPM |

Pole pairs | 2 |

Ls | 0.0662 |

Lr | 0.0662 |

Lm | 0.0945 |

Dynamometer machine | |

Required voltage (3 phase) | 208 V |

Required current (3 phase) | 12 A |

Speed range | 0–3600 RPM |

IGBT inverter | |

DC-bus voltage | 420 V |

DC-bus current | 10 A |

Switching Frequency | 0–20 kHz |

Grid side controller gains | |

Kp = 0.5, Ki = 7, Current regulator = 0.0001 A | |

Rotor side controller gains (for idr and iqr) | |

Kp = 4.5, Ki = 7.5 |

## References

- Abad, G.; Lopez, J.; Rodriguez, M.; Marroyo, L.; Iwanski, G. Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation; El-Hawary, M.E., Ed.; Wiley-IEEE Press: New Jersy, NJ, USA, 2011. [Google Scholar]
- Tazil, M.; Kumar, V.; Bansal, R.C.; Kong, S.; Dong, Z.Y.; Freitas, W.; Mathur, H.D. Three-phase doubly fed induction generators: An overview. Electr. Power Appl. IET
**2010**, 4, 75–89. [Google Scholar] [CrossRef] - Xu, L. Coordinated control of DFIG’s rotor and grid side converters during network unbalance. IEEE Trans. Power Electron.
**2008**, 23, 1041–1049. [Google Scholar] - Carlson, O.; Hylander, J.; Thorborg, K. Survey of variable speed operation of wind turbines. In Proceedings of the 1996 European Union Wind Energy Conference, Goteborg, Sweden, 20–24 May 1996; pp. 406–409.
- Zinger, D.S.; Muljadi, E. Annualized wind energy improvement using variable speeds. IEEE Trans. Ind. Appl.
**1997**, 33, 1444–1447. [Google Scholar] [CrossRef] - DeWind. D8 Series. Brochure. Available online: http://www.dewindco.com (accessed on 30 September 2014).
- Johnson, G.L. Wind Energy Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Rabelo, B.; Hofmann, W. Optimal active and reactive power control with the doubly-fed induction generator in the MW-class wind-turbines. In Proceedings of International Conference on Power Electronics and Drives Systems (PEDS), Denpasar, Indonesia, 25 October 2001; Volume 1, pp. 53–58.
- Tang, Y.; Xu, L. Flexible active and reactive power control strategy for a variable speed constant frequency generating system. IEEE Trans. Power Electron.
**1995**, 10, 472–478. [Google Scholar] [CrossRef] - Datta, R.; Ranganathan, V.T. Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes. IEEE Trans. Energy Convers.
**2002**, 17, 414–421. [Google Scholar] [CrossRef] - Brune, C.S.; Spee, R.; Wallace, A.K. Experimental evaluation of a variable-speed, doubly-fed wind-power generation system. IEEE Trans. Ind. Appl.
**1994**, 30, 648–655. [Google Scholar] [CrossRef] - Pena, R.; Clare, J.C.; Asher, G.M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEEE Proc.-Electr. Power Appl.
**1996**, 143, 231–241. [Google Scholar] [CrossRef] - Cárdenas, R.; Peña, R.; Proboste, J.; Asher, G.; Clare, J. MRAS observer for sensorless control of standalone doubly fed induction generators. IEEE Trans. Energy Convers.
**2005**, 20, 710–718. [Google Scholar] [CrossRef] - Petersson, A.; Thiringer, T.O.; Harnefors, L.; Petru, T.A. Modeling and experimental verification of grid interaction of a DFIG wind turbine. IEEE Trans. Energy Convers.
**2005**, 20, 878–886. [Google Scholar] [CrossRef] - Ledesma, P.; Usaola, J. Doubly fed induction generator model for transient stability analysis. IEEE Trans. Energy Convers.
**2005**, 20, 388–397. [Google Scholar] [CrossRef] - Chowdhury, B.H.; Chellapilla, S. Double-fed induction generator control for variable speed wind power generation. Electr. Power Syst. Res.
**2006**, 76, 786–800. [Google Scholar] [CrossRef] - Mesbah, M.; Islam, S.; Masoum, M.A.S. A novel direct active power control method for DFIG wind turbine applications. In Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT), Hilton Anaheim, CA, USA, 17–19 January 2011.
- Balogun, A.; Ojo, O.; Okafor, F. Decoupled direct control of natural and power variables of doubly fed induction generator for extended wind speed range using feedback linearization. IEEE J. Emerg. Sel. Top. Power Electron.
**2013**, 1, 226–237. [Google Scholar] [CrossRef] - Singh, B.; Naidu, N.K.S. Direct power control of single VSC-based DFIG without rotor position sensor. IEEE Trans. Ind. Appl.
**2014**, 50, 4152–4163. [Google Scholar] [CrossRef] - Zarei, M.E.; Asaei, B. Combined vector control and direct power control methods for DFIG under normal and unbalanced and distorted grid voltage conditions. In Proceedings of the 4th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), Tehran, Iran, 13–14 February 2013; pp. 107–112.
- Shukla, R.D.; Tripathi, R.K. Speed-sensorless voltage & frequency control in autonomous DFIG based wind energy systems. In Proceedings of the Power Engineering Conference (AUPEC), Perth, Australia, 28 September–1 October, 2014; pp. 1–6.
- Meegahapola, L.G.; Littler, T.; Flynn, D. Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults. IEEE Trans. Sustain. Energy
**2010**, 1, 152–162. [Google Scholar] [CrossRef] - Mohammadi, J.; Vaez-Zadeh, S.; Afsharnia, S.; Daryabeigi, E. A combined vector and direct power control for DFIG-Based wind turbines. IEEE Trans. Sustain. Energy
**2014**, 5, 767–775. [Google Scholar] [CrossRef] - Barambones; Cortajarena, J.A.; Alkorta, P.; de Durana, J.M.G. A real-time sliding mode control for a wind energy system based on a doubly fed induction generator. Energies
**2014**, 7, 6412–6433. [Google Scholar] [CrossRef] - Xu, L.; Cheng, W. Torque and reactive power control of a doubly fed induction machine by position sensorless scheme. IEEE Trans. Ind. Appl.
**1995**, 31, 636–642. [Google Scholar] - Dufour, C.; Belanger, J. Real-time simulation of doubly fed induction generator for wind turbine applications. In Proceedings of the IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 20–25 June 2004.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tanvir, A.A.; Merabet, A.; Beguenane, R.
Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System. *Energies* **2015**, *8*, 10389-10408.
https://doi.org/10.3390/en80910389

**AMA Style**

Tanvir AA, Merabet A, Beguenane R.
Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System. *Energies*. 2015; 8(9):10389-10408.
https://doi.org/10.3390/en80910389

**Chicago/Turabian Style**

Tanvir, Aman Abdulla, Adel Merabet, and Rachid Beguenane.
2015. "Real-Time Control of Active and Reactive Power for Doubly Fed Induction Generator (DFIG)-Based Wind Energy Conversion System" *Energies* 8, no. 9: 10389-10408.
https://doi.org/10.3390/en80910389